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§ I . INTRODUCTION *

The series Uo + Wi + «2 + • • • is defined to be convergent

whenever Ij (wo + «i + • • • + Un) exists; and the value of this

Hmit is called the swn of the series. If this limit does not exist,

the series is said to be divergent.

Some writers call a series divergent only when Ij («o+Wi+ • • •

+«„) = 00; all series which neither converge to a finite limit

nor diverge to infinity are then called oscillatory, f The present

considerations are limited to series which are oscillatory. We
shall follow, however, the terminology of most writers | by calling

divergent all series which do not converge; stating expressly,

if necessary, when a series diverges to infinity.

A necessary condition for the convergence of a series is Jj Wn = o.

Thus only a limited number of series can be dealt with. It is

accordingly desirable to extend the definition of the sum of a

series, so as to include a larger number of series with, which we
may deal rigorously. Our object will be to retain the class of

convergent series, and to add to that set, by means of a more

general definition, as large a class as possible of series which

are not convergent. In order to be able to deal with these

new series, however, we shall wish to preserve several funda-

mental properties of convergent series. We shall, in fact,

demand the following fundamental requirements of any general-

ized definition of the sum of a series:

* This paper was accepted as a dissertation by the Graduate Faculty of

the University of Missouri in May, 1910, in partial fulfillment of the require-

ments for the degree of Doctor of Philosophy.

t Bromwich: An Introduction to the Theory of Infinite Series, p. 2.

t See e. g., Goursat-Hedrick: Mathematical Analysis, p. 327.



INTRODUCTION

(i) The generalized sum must exist, whenever the series

converges,

(ii) The generalized sum must be equal to the ordinary sum,

whenever the series converges,

(iii) Each of the series

fwo + Wi 4- W2 + • • •

«i + «2 + • •
•

has a generalized sum, whenever the other has, and

t = s — uq, [{ s and t are their respective sums,

(iv) If each of the series

uo + Ui + U2 -\- • • •

vo -}- Vi -\- V2 -\- • • •

has a generalized sum, A and B respectively, then the

series («o + z'o) + (wi + Vi) + (w2 + ^'2) + • • • has a

generalized sum which is ^4 -\- B.

(v) If the series Uo + Ui -\- U2 -\- • • • has 5 for its generalized

sum, then ktio + kui + • • • has a generalized sum

which is ks.

I wish to express my gratitude to Professor E. R. Hedrick

for his interest in my work, and to acknowledge my indebted-

ness to him for many helpful and important suggestions. I am
also indebted to Drs. W. A. Hurwitz and H. M. Shefifer for

many suggestions and criticisms.



§ 2. HISTORICAL RESUME *

The earliest interest in divergent series centers about the

series

I - I + I - I + •••.

If we assume that this series has a generalized sum s, then the

series, obtained by dropping the first term, — i + i — i + i''-

must, by the third fundamental requirement of page 2, also

have a generalized sum which is obviously — s. We have then,

s — i = — sors = ^. Thus, if the series is to have any value

at all, that value must be |. And this is precisely the value

which Leibniz t was led to attach to the series, by different con-

siderations. The sum of n terms of the series is o or i according

as n is even or odd; and since this sum is just as often equal to i

as it is to o, its probable value is the arithmetic mean, ^. This

same value was later attached to the series by Euler, J in a more

satisfactory, though not entirely rigorous manner. " Let us

say that the sum of any infinite series is the finite expression,

by the expansion of which the series is generated. In this

sense, the sum of the infinite series i — x -\- x^ — x^ •
'

• will

be i/(i +x), because the series arises from the expansion of

the fraction, whatever number is put in place of x."^ In par-

ticular,

i = I - I 4- I -I + ••-.

* The best historical sketches are to be found in Borel: Legons sur les

Series Divergentes: Introduction, and in an article by Pringsheim given im-

mediately below.

t See Pringsheim: Encyclopddie der Math. Wiss., I, I, p. 107, note.

XInstit. Calc. Diff. (1755), Paris, II (p. 289).

§This quotation is taken from Bromwich, loc. cit., p. 266.
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4 UNIVERSITY OF MISSOURI STUDIES

It is true, as has already been intimated, that none of the

methods given above, to prove that the series should have the

value I, is satisfactory from a theoretical point of view. But

objections have been raised* to the result for practical reasons

also. Thus, the series i— i + i — i + --- may be obtained

from the expansion

I -\- X I — v2

I + X + X^ I

and setting x = i,

= I — x^ -\- x^ — x^ -\- X*' — x^ -{-

1 = 1-1 + 1-1 + •...

To meet this difficulty, Lagrangef observed that we should write

;
; ^ =l-\-0'X— X--\-X^-hO'X'^— X^ -{-'•-,

I -\- X -]- x^

so that for x = i, we have

f = i+o-i + i+o-i + ---.

If we now follow the method of Leibniz, we see that the sequence

corresponding to this series has, out of every three succeeding

terms, once the value o and twice the value i ; its sum is accord-

ingly 3- Thus, Lagrange has removed the practical objection.

Moreover the above method has been put on a rigorous theoretical

foundation, by means of the following proposition, J which is a

generalization of Abel's theorem:

Theorem a:§ // 5„ = wo + th + «2 + • • • + «n and

^0 + -^1 + • • • + ^n

W + I

= s,

* By Callet. See reference immediately below.

t Rapport sur le Memoire de Callet, in: Memoires de la classes des Sciences

mathematiques et physiques de VInstitut, t. III.

X Frobenius: Journal de Crelle, t. 89, p. 262.

§ Theorems embodying new results we shall indicate by numerals; all other

theorems will be lettered A, B, C, • • •.
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then
n

L 53 UnOC"^ = S.

z=l

Thus, in the case of the series i — i+i — ! + •••,

T ^0 + ^1 + • • • + ^n _ 1
•^

n
""2'

and accordingly Ij(i— Jt^ + x^ •••)=!; so that we may

define the value of the series i — i + i*-- tobeIj(i— :>;:

-{- x^ — x^ -\- • • •)> or what amounts to the same thing,

-y 5o + ^1 + • • • + ^n

whenever the limit exists.

The first mathematician actually to carry through the de-

finition was Ces^ro,* who approached the subject from another

standpoint. Cauchy has defined as the product f of two series

f Wo + Wi + • • •

the series

UqVq + (wot'i + tiiVQ) + (2/0^2 + UiVi + U2Vq) + • • •

;

this definition being justified by the theorem, due also to Cauchy,

that the product series thus defined of two absolutely convergent

series, is itself absolutely convergent. Mertenst has generalized

this theorem by proving that the Cauchy product of an abso-

lutely convergent series by a simply convergent series is con-

vergent. The product of two simply convergent series may,

however, be divergent. Ces^ro has studied the divergent series

which result from the product of two simply convergent series,

and has obtained the following remarkable theorem:

* Bulletin des Sciences maihematiques, t. XIV, 1890.

t We shall later refer to this as the Cauchy-product.

X Journal de Crelle, t. 79, p. 182.



6 UNIVERSITY OF MISSOURI STUDIES

Theorem b : Let the two series

I
«o + Wi + «2 + • • •

converge to u and v respectively, and let

W„ = (UoVn + UiVn-l + • • • + n„Vo)

Sn = IVo -\- Wi + • + Wn
then

LSo -\- Si -\- •
' • -\- Sn

^— = II V.
n -\- I

The two theorems which we have stated justify us in stating

the following definition:

Definition:* // 5„ = wo + ^i + «2 H— • + Un, the series Uq + iii

-\- • • • -\- Un -^ • • • is summahle and has the valne s whenever

LSo -\- Si -\- • • • ~\- Sn
.

= s.
n + I

Let us now proceed to show that this definition satisfies the

fundamental requirements of page 2. To this end, we shall

prove the following theorems.

Theorem c:'\ If a series converges, it is summahle, and the two

definitions give the same sum.

Let Sn = Uq -\- Ui -{•••' -\- Un, and L 5„ = 5; we shall prove
n=co

that

L-^O + ^1 + • • • -\- Sn

n=« W + I

We have:

5o + -Jl + • • • -\- Sn

W + I

(50-5)+ (51-5) -I |-(5g— 5)+ (5g+i-5)H |-(^ri-5)

n + I

|5o-5| + |5i-5|-| i-kg-l--y| |5g-5|H hl^n--^
""

« + I W + I

* Ces^ro calls series of this type sitnply indeterminate.

t By this theorem requirements (i) and (ii) are satisfied.
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Since Tj Sn = s, we can take q so great that
| 5, — 5

|
< e / 2,

i> q. Having chosen this q, let L be the largest of the numbers,

\si — s\, i = o, I, 2, '
' • q — I. Then we obtain:

^0 4- 5i + • • • + 5„ . qL An - q-\- i)e qL e
, — 5 S ; +

}
; ^— <

1 + -
W + I w + I 2{n + l) W + I 2

We can now choose n so large, n > r, that

gL e
<

n + I 2

and hence,

Jo + ^1 + • • • + 5n — s\ < e, n > r.

w + I

nkL n+i J-

I

= s.

Theorem d:* Each of the series

Wo + wi + «2 + • •
•

Ui + W2 + • • •

is summable when the other is; and s and t, their respective sums,

are connected by the relation s — uq = t.

We shall prove only one part of this theorem, the method for

the second part being exactly the same. We begin by proving

the following fact.

Lemma: If the sequence Sq, Si, • • • 5„, • • • is summable and has

5 for its sum, then the sequence Si, Si, • • • Sn, • • • is also summable,

its sum being likewise 5.

For,

L -^i + ^2 + •
• • + Sn+l

-J-
So

, T ^^ '^ '
'

'
'^ •^"+^__ = ^ _l_ ^ —-—

TC=oo n ~f~ I 71=00 n ~f~ I n=:«) n ~\~ i

_ J ^0 + •?! + • • • + Sn+l J So + Si + • • • + Sn+l W + 2

« + I n=« n -\- 2 n -\- I

LSa+ Si -\ -\- Sn

«=« W + I

By this theorem requirement (iii) is satisfied.
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To return now to Theorem d; we wish to prove that if

«o + i'l + W2 + • • • is summable to s, then Ui + «2 + • • •

is summable to 5 — iiq. The sequence corresponding to the

series Wo + Wi + W2 + • • • is «o, Uo -\- Ui, • • •
. By the lemma

proved above, it follows that the sequence Mo+«i, Uo-\-Ui-\-U2, • • •

or Si, 52, • • • is summable to s. The sequence corresponding to

Ui + «2 + • • • is Ui, III + W2, • • • which may be written

5i — Uq, 52 — uo, • • •• Now

J r (51 — Mo) + (52 — Uq) + • • • + (5n - lip) 1

n=ao \_ n \

-r /5i + 52 + • • • + 5n \
= _Li I — «0 I = 5 — Mo.

n=« \ n J

Theorem e:* If

Uo + Ui + • • •

vo + Vi -\- • •

-

are summable to u and v respectively, then the series (mq + ^o)

+ (mi + z'l) + • • • is summable to u -\- v.

Writing Sn = Uo + Ui -{-••'-{- Un, tn = Vq + Vi +• - •+ Vn,

we have 5„ + ^„ = (mq + Vq) + (mi + z;i) + • • • + (m„ + »„)•

We obtain:

y (50 + /q) + (5i + /l) + • • • + (5n + /„)

n=oo W + I

T 50 + 5i + • • • + 5„ -r /o + /l 4- • • • + /n
= Li 7— + Ij T— = M + ZJ.

«=« W + I „=» W + I

Cesaro's definition of summability has accordingly been justified

from the theoretical standpoint of our requirements for any

generalized definition. We may naturally ask the practical

question: how large is the class of series with which this defi-

nition enables us to deal? A partial answer to this question is

contained in the following proposition:

* By this theorem requirement (iv) is satisfied. See also note p. 19.
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Theorem f: A necessary condition for the summability of the

series Uo -\- Ui -{•'• -\- Un ••• is

JL — = o.
»=« n

Since the series is summable,

5o + 5i + • • • + Sn-l T ^0 + -Jl + • • • + >^n^
n

^—
;r+"i— ^"^

_ -y -^0 + -yi + • • • + Sn-l _ J So -{ Si -\- • • • -{- Sn

Hence

:

LUfi -w- On S n—\ -r Sn -w- Sn— 1— = Li = L - - Li -— = o.

We are accordingly limited to series for which

(I) L - = o.
n=(io W

But such a simple series as i— 2 + 3 — 4 + 5--- fails to

satisfy this condition. Furthermore, this series can be easily

evaluated by following out the principle of Euler; for if we put

X = I in the expansion:

T

= I — 2X -\- TyX^ • • •
,

(I + xY
we obtain

? = i-2 + 3-4+---.

We are thus led to extend, with Cesaro, the above definition of

summability of order i, to summability of order 2. We say

that a series is summable of order 2, if

J {n + l)-yo + ^^1 + • • • + 2Sn-\ + Sn _h {n + i){n + 2)
~'-
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A necessary condition* for the existence of this limit is that

Ltifi

so that we cannot evaluate the series,

r(r + i) _ r(r + i) (r + 2)

2! 3

although we obtain by Euler's method,

. 'V.' \^ ^) ' \' ')\>
\ ^ > , ^I-. +—:^ -, +•••, r>2,

r{r + i) „ rij + \){r + 2)
= I — rjc +

i
— :x;2

— —

i

^ +
(i \-xy 2!

and accordingly

I r{r -\- i) r(r + \){r + 2)

We are thus led to state the following more general definition

:

Definition rf The series Mo + Wi + M2 + • • • is summable of

order r, if r is the smallest integer for which there exists the limit:

r{r-\-\)' • '{r-\-n—\) r{r-\-\)- "{r-\-n— 2)
''

^!
+'^

in-i)\
+"•

r{r+i)

^^^
n-k (r+i)(r+2)--.(r+n)

'

w!

This definition includes convergence for r = o; it also includes

the other definitions given above for r = i, 2 respectively.

We shall not prove that this definition satisfies the requirements

of page 2; this is easily verified. J

Let us now return to Ceskro's first definition, and observe that

we may generalize it in a more natural way.

* Bromwich, loc. cit., p. 318.

t Ces^ro, loc. cit.

I This is done in a more general case, infra, pp. 55-57.
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Definition:* Let

5o + 5i + • • • + 5„

(3)

/ (1) =
W + I

I
(r+1) _ r = T Otn ^^ J

, r I, 2,

then the smallest integer r for which L tn^""^ exists, shall make

the series summable of order r.

To distinguish this definition from that on page lo, we shall

call the definitions Ces^ro-summability of order r and Holder-

summability of order r, denoting them briefly by {Cr) and {Hr)

respectively. It is knownf that these two definitions are equiv-

alent for the same r.

We may now ask how big a class of series this generalized

definition enables us to deal with. If a series is {Cr), thenJ

n=a> n

Accordingly the series i — t -\- f — t^ -\- • • • {t > i) does not

have a sum (Cr) for any value of r] since

L- + 0, / > I.

n=oo "

We are thus led to generalize still further the definition for the

sum of a series.

From the definition given on page lo, it is clear that we may

write Cesaro's forms as follows:

_ T [" gp^O + aiSl + • • • + CLnSn l

n=z« L Oo + fll + • • • + On J
'

* Holder: Mathematische Annalen, Bd. 20, p. 535.

t Schnee: Math. Annalen, Vol. LXVII (1909), p. no.

Ford: Am. Journal of Math., Vol. XXXII (1909), p. 315.

X Borel, Series divergentes, p. 92.
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where the Ui are functions of both n and r, r being fixed.* Let

us choose as our definitionf

io{r)sQ +
= L

r=«> n=
J V ao(r)so + aiir)si + • • • + an{r)sn "|

n=« L ao(r) + fli(r) + • • • + flnW Jao(r) +
In particular we shall take ap{r) = r^/pl, and obtain

= L L
(4)

r=cc n=^ao

I 2

!

«

!

I 2

!

n !

= Li Jj e-' \ So -\- Si-+ • " + Sn
—

It can be proved readily | that this limit exists, whenever the

series converges. We shall now transform! this limit.

Let II

s(r) = So + Si~ + S2—,+ • • • + ^n —j +
n !

S'{r) = 5i + 52 - + 53 -j + • • • + Sn+l —, +12! Ill

then

ui(r) = s'{r) - sir) = Ui + «2- + z'2—j + • • • + u„ — +
I 2 ' ^^

But
w!

rfr
[e-^5(r)] = e-'[s'{r) - s(r)],

so that

and

e-'Sir) = I e-q5'(r) - s{r)]dr + «o

r)dr.

* Borel, Series divergenies, p. 94.

t r is now a positive real number.

X Bromwich, loc. cit., p. 298. This is a special case of Th. 12, p. 52 (infra).

§ Borel, loc. cit., p. 97.

II
It is assumed that s{r) is convergent for all values of r; otherwise the

limit (4) would have no meaning.
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3

If now we integrate by parts we obtain:

5 - «o = e-"- 1 ui{r)dr +1 «~'
I Ui{r)dr dr,

or, if we let:

u{r) = Mo + u\r + "2 -,+ ••+ «;j— H- •• • = Mo + I ui(r)dr,
2 . 71 , ^Q

e-''[u{r) — uo]dr

= [e-''ii{r)]o — Mo[e~ir + I e-''u{r)dr - Uq I g-'-f/r

t/Q Jo

= [e-''u(r)]o +
I

e~''u{r)dr,

1. e.,

5 — Mo

or

Ij [e-''M(?')] — Mo + I e-Hi{r)dr,
r—'n i/O

e-'"M(r)(/r.

e~''ii{r)dr is convergent, then it follows

from the last equation that L [e~''u(r)] must exist. But this

limit must necessarily be zero, for otherwise, the integral would

not converge. Hence we obtain

s = j e~''u(r)dr,(5)

where

whenever the integral converges. It can be proved f here, too,

u{r) ^ Mo + Ml - + M2 ;7j + • • • + «n —, +

* We have gone into greater detail here than does Borel, loc. cit., p.

But this is essentially his argument,

t Bromwich, loc. cit., p. 269.
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that when the series «o + «i + • • • + «n + • • • converges, so

docs the above integral, and their values are the same.

Furthermore Borel proves the following theorem:

Theorem g :* // the Borel-integral definition] applies to the series

:

«1 + «2 + • • • + Wn + • • • = S,

then it also applies to the series Mo + «i + «2 + • • •
,
giving for

its sum s + 2/0-

The converse, however, is not necessarily true. Thus if the

series Uo -\- Ui -\- th -\- • • • is summable by (5), it does not follow^

that the series Ui + z<2 + • • • is summable by (5). Since this

fact is opposed to the requirement (iii), page 2, we are led to

modify the above integral definition, and to state, with Borel,

the following generalization:

Definition: The series Uq -\- Ui -\- ih -\- • • • shall be called ab-

solutely summable, whenever the integrals I e~''
|
u{r)

\
dr,

Jo

[ e'"
I

u''^\r)
I

dr converge, where X denotes the order of any

derivative.

That this definition satisfies requirement (Hi) is proved by the

following theorem : §

Theorem h : If either of the series

Uq + «1 + «2 + • •
•

Wi + ^2 + • •
•

is absolutely summable, so is the other; and if s, t be their respec-

tive values, we have s — Uq = t.

We shall not enter into the further generalizations which

have been given by Borel himself and by Le Roy.||

* Borel, loc. cit., p. loi.

t We shall call the two definitions given by Borel, the Borel-mean and the

Borel-integral definition respectively.

X For an example, see Hardy, Quarterly Journal, Vol. 35 (1903), p. 30.

§ Borel, loc. cit.

II
Le Roy: Annates de la Faculte de Sciences de Toulouse (2° series), t. 2

(1902), p. 317. See p. 60, footnote.



§ 3- AVERAGEABLE SEQUENCES

On page 4 we have considered the series

I - I + I - I + • • •

I+0-I + I+0-I + ---,

and, replacing them by their respective sequences, we obtained

i = I, o, I, o, •••

f = I, I, o, I, I, o,

The probability-method of Leibniz* consists in taking for the

sum of the sequence, the average of its limit-values. This method

has been justified by the theorems of Frobeniusf and Cesaro,J

and the further generalizations. We propose now to give a

justification of the method from another point of view.

To define the sum of a sequence as the average of its limit-values

is obviously not adequate; for although we can tell that the limit

I is to be counted twice in the sequence considered above,

I, I, o, I, I, o, • ••,

it is not easy or even possible to state the multiplicity of the

limit-values in general, as is evident from the following example:

Si = o, i ^ n^ ] _
So, Si, S2, ' • ' Sji, ' ' '

, • o f
^ — O, I, 2, • • •.

Si = I, I = n-
]

To meet this difficulty, we shall proceed as follows.

Let us assume, to be concrete, § that the sequence

•^Ot •^l) -^2) * -^n) * '

* See page 3.

t See page 4.

X See page 5.

§ We shall go into every detail in only this simple case; the later general-

izations we shall outline only briefly.

15
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has two limit-values h and h. Then we have

\sm - /il < e, \s„ - l2\< e,

for an infinite number of values of m and of n, provided ni, n>N.
Having chosen e and N, let us now choose i > N; then there will

be m of these i numbers 5,- which fall in the interval about h,

and n which fall in the interval about h- Since w and n are func-

tions of i, we may write m = fi{i), n = f^ii). If we choose e suffi-

ciently small, and i > N, we shall have

fid) +/2« +k = i,

where ^ is a constant independent of i.

Definition: The sequence 5c, Si, S2, • • Sn, • • •, having h and h
as limit-vahies, shall be called averageahle and have s for its sum

provided

• itil h{i)+h{i) J
'•

That this limit, when it exists, does not depend upon the

particular e we have chosen follows at once. For if we take

e <e, calling the corresponding functions /i(i) and fiii), it is

clear that

hii) = 7i« + h
h{i) = hii) + k2

where ^1, k^ are independent of i. We accordingly have:

[/i(i) - ^i]/i + [hii) - k^lh

i^A Mi)-\-f2(i) i
^ h I Uiii) - H + u,{i) - H

= L
fi{i) — ki /'(*) ~ ^2

ciV hii) + hii) J'
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since

T ^1 _ X ^2 _

Let us now find the sum of the sequence suggested on page 15,

I ; o, o; I, o, o, o, o; 1,0,0,0,0,0,0; • • •

,

1. e.,

5i = I , i = n- 1

m2 Jo, i =#

Let us choose i = m, and let n^ be the largest square integer

less than or equal to m. Then we have:

-w- n I -\- (m — n) o -^ n
s = Li = ij - = o,

since W" ^ m.

Let us now see whether this definition satisfies the require-

ments of page 2. The first two requirements are obviously

satisfied. As to the third, we observe that corresponding to

the series ^0 + ^1 + ^2+ • • • + w„ + • • • ; Wi + ^^2 + • • • + w„

+ • • • , we have the sequences So, Si, 5?, • • • 5„, • • • ; Si— jcq, s^ — Ho,

•
' • Sn — iio, • • • ; and if the limit-values of the first sequence,

which will be assumed to be averageable to s, be h and h, then

those of the second sequence are h — Uq, h — Uq. We accord-

ingly have:

-iio = s—Uo.

We shall now show that the fourth requirement is satisfied.

Theorem i : The sum of two averageable sequences is itself

averageable, and has for its value the sum of their respective values.

Let the two sequences

I Sq, Si, S2, ' ' ' Sn, ' ' '

I to, ti, /21 • • tn, • •
•
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have h, h and nti, mi as their respective limit-values, and 5 and

/ as their respective sums. Then we have:

/ =
tL L gi« + g2(i) J-

We wish to show that the sequence

So ~t~ ^Oi Si -{- ti, ' ' • Sn -T tni ' '
'

is averageable, and has for its value s -\- t. We observe that

the only limit-values for the sum-sequence are h + Wi, l\ + m2,

U + Wi, /a + W2. Let us call 7^,i(w) the number of the (5^ + /,,)

which are near the limit-value /,• + rrij. Then we have to

consider:*

Fn(w)(/i+ Wi)+/^12(«)(/l+W2)+F2l(w)(/2+Wi)

+/^22(w)(/2+ ^2)

/^ll(«)+ Fii{n) + 7^2 l(w)+ /^22(«)

It is clear, however, that

Fx,{i) + Fn{i) = /iW + ^1U ^nW + ^2i(^') = giC^) + d,

F2,{i) + F22(i) = f2(i) + C2 11 Fi2{i) + FasC^) = g2(^) + ^2

where Ci, C2, di, d^, are constants independent of i. We ac-

cordingly obtain:

Fn{n){li + Wi) -f Fn(n){h + W2) + F^Mih + Wi)

+ F22in){h + ^^2)

^ii(w) + i^i2(w) -I- F2i{n) + F22(n)

r [Fii{n)+ Fi2(n)]h+[F2i{n) + F22(n)]h

_ y i +[Fll(w)+ /^2l(w)]mi+[Fi2(«)+ F22(«)]w2

. I Fn{n) + 7^i2(w) + F2i(w) + /^22(«)

* We have defined averageability for sequences with only two limit values.

The extension to sequences with any finite number of limit-values is obvious

(see page 19).
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[Mn)-\-c,]h+[Mn)+c.]h

igi{n)-]-di]nii+ [g2(n)-\-d2]in2

/l(w)+Ci+/2(w)+C2

+ 1.
giin)-\-di-\-g2{n)-\-d2

= s -\- L^j r /i(w)/i +f2(n) l2~\
J V gi{7i)mi +g2(n)m2 l

ntL L fM +h{n) yHX gr{n) + g2{n) J

Thus it is seen that the requirements * of page 2 are satisfied

by our definition. The extension of the definition to the case of

sequences with any finite number of limit values is obvious.

Definition: A segiience having k limit values, /i, /?, • • • h, shall

be called averageahle, and have s for its value, if

n=i

^fn{i)ln

Hfnii)

It can be easily verified that Theorem i applies to this extended

definition.

But we can generalize the notion of averageability even to

cases where the sequence has an infinite number of limit-values.

Let us consider a reducible sequence, and let us write:

(E) = (£(0)) = So, si, St, •• Sn,

(£(2)) ^ /^(2)^ ;^(2)^ ;^(2)^ . . . i^m^ . .

.

where the sequence {E'^'^) consists of the limit values of the

sequence (£^'~'0. Since the sequence is assumed to be reducible,

there exists a k such that (£(*+i)) = o. Then (£) is reducible of

order k, and (£^^^) has only a finite number of elements.

* Requirement (v) is satisfied by each definition considered.
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Let US assume that our sequence is reducible of order k, and

that (£(*>) has for its elements lo^''\ //^\ • • • Ip'^'^K If now we

choose e sufficiently small, all but a finite number of the /i^*~^^

will fall in the intervals
|

/<(*-!> - Ip^^^
\
< e, p = o, i, 2, p.

Suppose that the finite number of /.-^'^"^^ which do not fall in

any of these intervals is pi, and call them, w/'^"'^ m2^''~^\

• • • mp^^''~'^K We can choose ei < e, so small that only a finite

number, p2, of the li^^~^^ do not fall in any of the intervals

above, or in the intervals
|

/,^''~2) _ wzp(^— 1)
|
< gj, ^ = 1,2, • • • pi.

Call this finite set of limit points mi^''~^\ • • • mp^'-^~^\ We can

repeat this process until we reach the sequence (-E), which will

have only a finite number of elements outside of all the intervals

considered.

Definition: A reducible sequence shall be called averageable,

unth s for its sum, provided*

5 = LL
e=0 H=K

j= l i= l

f-
= L F(e)

6=0
j=k i=p^_j+i

2: Z fi''\n, e)
j=i i=i

exists.

In this general definition it is convenient to distinguish between

different kinds of limit points. Let us suppose that /,(«, e) cor-

responds to the limit point w,-, and let us assume that the fol-

lowing limit

_ J /.(w, e)

"^" Z Z Mn, e)
j=i 1=1

exists for every i. We shall call w,- a iveak or a strong limit

point according as a,- is or is not equal to zero. We may then

state the following proposition:

Theorem 2 : A reducible averageable sequence with a finite number

of strong limit points is averageable independent of e.

* We have put Wi^*^ = /i^*^ for the sake of uniformity.
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For simplicity consider the case where the reducibility is of

order 2. The strong limit points are then either of the first

or of the second order. There is only a finite number of strong

limit points of order 2, and a finite number of strong limit

points of order i. Let m be the total number of strong limit

points. Since for the remaining limit points a,- = o, we have

F(e) = L fi{n, e)h -\- fijn, e)h + • • • +/r«(w, e)l„

H fi{n, e)

If we now choose e' < e, the values of the coefficients of the

strong limit points are unaffected. Hence F{e') = F(e), and

our theorem is proved.

Theorem 3: A reducible averageahle sequence with a finite

number of strong limit points is Cesdro-summable of order i ; and

the two values obtained are equal.

We lay off ei intervals about the limit points of order k — i-\-i,

(i = I, 2, • • • ^) as on page 20, and we thus have for n > N,

if e is the largest of the ei,

I h - s/
\
< e, i =^ I, 2, •

' fi{n, e)

I
h - Si"

I

< e, i = 1,2, • • • fiin, e)

where 5,-^'' are those Si

which fall in the e-\n-

terval about /,-.

I
Ip-Si^p^

I
< e, i = 1,2, fp(n, e)

_

We have accordingly:

1 (fih -\-f2h + • • • +/p/p) - [(si' + • • • + Sf/) + .

Since

(5/ + 5/ + + Sf,) + • • • + (5i(-) + . • • + Sf/^>^)

= Sm+1 "T Sm+2 "T

-\-fp)e.

+ s„

where q = /i + /o +
have

:

+ /p, and m is sufficiently large, we
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flh + f2h + • • • + fjJp S„,+ i + Sm+2 + • • • + Sm+g
< e.

Hence

2 J

provided either limit exists. By Theorem 2, the left-hand

limit exists independently of e; accordingly the right-hand limit

exists; that is, the given sequence is summable (Ci).

In practice, the following proposition, a corollary of the theorem

just proved, will be found useful:

Corollary: If for some positive integer k, and for every positive

integer i < k, the sequence Si, Si+k, Si+2k, • • • converges, then the

sequence 51,^2, • • • is summable (Ci).

Let us take as an example the sequence

(•+1).
'

Si — i log ( I + T I , i odd

= 0, i even

to which it is not easy to apply the formula

J 5i -f 52 + • • • + -^n

n=cc n

We see, however, that the two sequences

51, S], • •

52, Si, •

converge; hence the given sequence is summable (Ci).



§ 4- PRODUCT DEFINITIONS

In dealing directly with sequences, the Cauchy-product* of

two series does not appear to be entirely natural. Even in

the case of convergent sequences, a more natural definition of

product is close to hand. In fact, if s and t are the respective

sums of two convergent sequences,

•^0, Si, 52, • • • Sn, ' '
'

^0) ilt ht ' ' ' in, • • •
>

then it follows from a fundamental theorem of limits that

1j sJh = St.

n=oo

We are accordingly ledf to propose the following

Definition : The natural-product of two sequences,

So, Si, 52, • • • Sji, • ' •
J to, ti, ' ' ' tn, ' ' 't

is the sequence: Soto, Siti, • • • Sntn, * • ••

We may then state the obvious proposition:

Theorem: The natural-product of two convergent sequences,

whose values are s and t respectively, is itself convergent; and its

value is st.

If we compare this theorem with the corresponding theorem J

for the Cauchy-product, it will be seen at once that the natural-

product is of superior value to the Cauchy-product, in the case

of convergent sequences of constant terms. In the case of

sequences which are not convergent, however, the natural-

product can play no part. For consider the simple example,

* Sec page 5.

t Baire: Cours D'analyse, t. i.

X Theorem b, page 6.

23
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S = I, O, I, O, • ••

/ = I, O, I, O, •• •

W = I, O, I, O, •••,

where the sequence whose value is w is the natural-product of

the two sequences whose values are 5 and t respectively. Here

s = t = w = ^, and accordingly w 4= st. We ^re consequently

led to generalize the definition for the product of two sequences.

Let us consider again the two sequences

I
So, Si, 52, ' ' ' Sn, ' ' '

L to, ti, t2, • • ' tn, • • •

and let us form the array:

Soto,
\
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5 — So, Si,

t — to, t\.

we wish to prove that the sequence

^O^O! •^0^1) •^1^1) -^1^0! -^0^2) -^1^2) -^2^21 •^2^1. -^2^01 " '
'

is averageable, and that its value is st. We shall assume* that

the sequence (5) has the two limit-values h, h, and that the

sequence (t) has the two limit-values nti, nh. The only limit-

values of the product sequence are then: hnii, /1W2, hmi and /2W2.

We are given

+ /2(w)/2^ J \
Mn)h + f2(n)h l

nti I Mn)-hMn) J

«=« L giw

and we wish to consider:

n=co L

+ /2(W)

+ ^2(w)/2

+ gM I

{n)hmi + Fn{n)li'm2 + Fii{n)h'mi -\- F2i{n)l2m2

Fnin) + Fuin) -f- i^2i(«) + i^22(«) ]
where Fij{n) is the number of elements of the product sequence

near Umj. If we pick n elements from the product sequence,

we observe:

Fii{n) = fi(n)gi{n) + ^n 1 f F^iin) = /2(w)gi(«) + ^21hi
I

r F2i{n) =

h2 J I F22{n) =Fn{n) = fi{n)g2{n) -f ^12 J I -F22(w) = f2{n)g2{n) -f ^22,

where kij are constants independent of n. We have, accordingly,

r^n {n)limi -f Fn(?i)lini2 + F2i{n)l2fni -f F22(n)kfn2

Fn(n) + Fn{n) + F2i{n) + F22(n)
.

[/i(w)gi(w) + kn]hmi -f [fi(n)g2{n) + kn]hni2

+ [f2(n)gi(n) + k2i]hmi -\- [f2{n)goin) -f k22]hm 2

fiin)gi{n) + kn +/i(w)g2(») + ^12 +/2(w)gi(«)

+ ^21 +f2{n)g2{n) + ^22

The proof for the general case is precisely similar.
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= L
~fi(n)gi{n)hmi +/i(«)g2(w)/im2 +f2{n)gi(n)l2tni

+ f2{n)Z2{n)hm2

.»=« L Mn)gi{n) +fi{n)g2{n) +f2in)gi{n) -]r h{n)g2{n)

J r [hWi -^Ji{7i)h] [gx{n)mi + g2(w)w2] 1 ^

For example, the square-product of the sequences

f 5 = I, o, I, o, • • •

1/ = I, o, I, o, • • •,

is

w^= i; o, o, o; i, o, i, o, i ; o, o, o, o, o, o, o; 1,0,1,0,1,0,1,0; • • •.

If we choose m terms of this sequence, and let (2«)^ be the largest

square of an even integer less than or equal to w, so that

m = {27iY -\- k, o < ^ < 8« + 4,

we get:

T f [i+3H h(2«-i)]i+[w-(iH l-2w-i)]-o

»=« m „=«, 4^2 -f k
_ 1

Thus it is verified that w = s • t.

Although it is true that the natural-product is better adapted

to convergent sequences than the Cauchy-product, and that the

square-product is better suited for averageable sequences, it must

be remembered that in analysis the things that arise frequently

are not sequences of constant terms, but rather series of variable

terms, notably power series. In the case of power sei'ies, the

Cauchy-product is certainly more valuable; for if we multiply

two such series according to the Cauchy scheme, we obtain the

same result which is given by multiplying the two series as if

they were polynomials, thus:
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{U(x) = «o + UiX + U2X'^ 4- UsX^ + • • • + Wn^" -f- • . .

V{x) = Vo + ViX + ViX"^ + VzX^ -f- . . . 4. VnX'' + • • •

ze'(A;)=w(x)-f(x) = z^oyo+(«oi'i+Wii'o)x+(wo?;2+WiZ'i+M2Z'o):'c^H .

Furthermore, to this symbolic advantage is added the theoretical

one which is contained in the following theorem, due to Ces^ro,*

which is a generalization of Theorem b.

Theorem (j): The Cauchy-product of two Cesdro-summable

series, of orders p and q, and of values s and t respectively, is itself

Cesdro-summable of order at most p -{ 2 -\- i, and its value is st.

In certain special cases, we can slightly improve upon the

results of Ces^ro's theorem. Thus, if two series are convergent

(i. e., summable of order o), their product must be summable

of order at most i. If, however, one of these series converges

absolutely, then the product-series is convergent,! as has already

been stated. J Similarly, the Cauchy-product of two Cesaro-

summable series, one of order r, the other convergent, is sum-

mable (C+i) ; if the convergent series happens to be absolutely

convergent, however, the product can be shown to be summable

(Cr).

Theorem 5 : The Cauchy-product of a Cesdro-summable series

of order r by an absolutely convergent series, is itself Cesdro-sum-

mable of order r.

Let

^n = Wo + Wl + • • • + W„,

tn == Vq -\- Vi -\- " ' -\- Vn,

Wn = thVn + UiVn-\ + * " ' + UuVq,

3'n = Wo + Wl + • • • + W„.

* Ces^ro: Bull, des Sciences math., t. XIV, 1890.

t Mertens, Journal de Crelle, t. 79, p. 182.

J P. 5, supra.
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r{r -\- i) • • {r -\- n - i)
,

r{r -\- \)- • • {r -\- n - 2)

111
+ yi {n- i)\

r(r + i)

+ ••• -\- yn-2
——^— -\-yn-i'r+yn,

r(r + i) ••• (r + w - i) r(r + i) - (r + n - 2)

+ • • • + /n-

, ,
r(,r + 1) • • • {r + n - i)

(« - i)!

r{r + i)

2!
+ /„_!•;' + /„,

(r, w)

We assume:

\jSn = S, Ij [|Mo| + |Wl| + • • • + Vln\ ] = A,

T

n=^ (r + i) • • • (r 4- w)
= i,

and we wish to prove

:

Yn

t=« (r -\- i) ' (r -{- n)
= s-t.

Proof:

Lemma: If

.=00 (r-hi) •• (r-\-n)

n\

= t, then Ij
T — T

(r + i) • • • (r + w)
o,

For
^ = I, 2, ••• p.

-1 n T
(;- + i) • • • (r + w) (r + i) • • • (r + w)

w!
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T T' n J- n—p

29

n=8

(r -{- i) (r -\- n) (r -\- i) - - {r + n - p)

n {n-p)\

{r-\-i) " {r-\-n - p)

(n - p)\

(r + i) •••(/' + w)

T T
{r-\-i)- • (r-\-n) (r-\-i) • • •(r-{-n— p)

n\ {n— p)\

n{n — i) ' • {n — p-\-i)

(j + n)- {r-\- n — i)- - - {r -\-n — p-\- \)
t — t - I = o,

Now

y,, = uovo + (tiovi + wiz'o) + (U0V2 4- wiz/i 4- U2V0) 4- • •
•

+ {UoVn + UiVn-l + • • • + tln~lVl + UnVo)

= Uo{Vo + Vi-{' • • • -\-Vn) + UliVo + Vi-\- -\- Vn-l) + • •
'

+ Un-l{Vo + Vl) + UnVo,

yn = Wo^n + Ml/n-1 + ' ' " 4" «n-l^l 4" l^Jo-

r{r + i) • • • {r -^ n — i)

Yn = UotQ

+ (i^oi^i + Uito)
r{r -\- i) • • • (r -j- n — 2)

(n-i)\

r(r -\- i)
4- • • • 4- {Uotn-2 + • • • 4- tin-2to) ^"j

4-(z<o/„_lH \-Un-lto)r+ (Uotn-] ["Wn^o).

Yn = UoTn + UlTn-l 4" • • • 4" Un-lTi 4" Wn^^O,

Yin = UoTin 4- UlTin-l 4" ' * ' 4" thn-lTi 4" U^nTo,



30

Let

R =

UNIVERSITY OF MISSOURI STUDIES

*7l(2W)

(npTin + UiT2n~\ + • • • + thn-lTi + thnTp)

{r + i)(r + 2) • • • (r + 2w)

(2«)

!

Tn
— (tlo + Wl + • • • + Mn)

(r + l) • • • (r + «)

R < U<o

7^2 n -t n

+ I l«g+i

(r+i,2w) {r+i,n)

+ ••• + !«

7^2n—g-l

-/ 2n-l -» n

{r-\-i,2n) (r+i,w)

(r+i,2w) (r +

T

^11
i,w)| J

4- |Wn+l|

< Ml + Ms + |Wg+ll

(r + I, 2«) (r 4- ii w)

+ Wn\

r„_i

+

-^ n

(r + I,2w) (r +

r + I, 2W

7^2n-g-l

+ • • • + W2n|

+

M1

I, 2W)
I J

f+I,2W — g— l| |(r + I, w)

+ • • • + \Un\

T
(r + i, w)

+
{r +
^11
I,«)1J'

where Mi, M2 and M3 stand respectively for the expressions in

the first, second and third brackets above.
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! B
< — for all m.

2(r + I, m)

M, < {|«„+i| + ••• + \lhn\}B.

Now as to Mu
i 2n—

p

^ n <
In T

{r-\-i,2n) {r-\-i,n) |(r+i,2w) {r-\-i,n)

+

<

(r+i,2w) (r+i,2w)

5 5

; p =0,1,2,

2{A + By 2{A +B)
,iin>N;

'.R < {\uo\ + |mi| + ••• + |Mg|} jqr^

+ {\u,+i\ + • • • + \un\ + • • • + \u2n\\B, iin> N.

Now choose q so large, that

\u,^i\+ " +\u2n\<j-^, q> Q (or all n.

Moreover, |wo| + • • • + |w,| < ^ for all q.

eA -\- eB
:. R < . ^ = e.

Thus

Similarly

A-\-B

F2„

p
y2n+l

V^{r^ i,2w+ i)

= s-t.

= s-^.

The theorem is now proved.

In the case of power series, then, both the symbolic advan-

tage and the theoretical importance of Theorems j and 5 lead
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naturally to the Cauchy-product. This advantage does not ap-

pear, however, in case of sequences which do not correspond

to power series,—for example, in Fourier's series; in this case,

the square-product may be of greater service than the Cauchy-

product, We should observe, however, that while the square-

product may justly replace the Cauchy definition of multipli-

cation, in certain cases; the definition of averageability has the

disadvantage of presupposing the knowledge of the limit-values;

and these are not always easy to determine even in the case of

sequences of constant terms.



§ 5- ON CERTAIN POSSIBLE DEFINITIONS OF SUMMABILITY

Cauchy has proved* the following theorem, which we shall

show is equivalent to Theorem c.

Theorem k: If Un> o and

L ^-1^ = /, then L «„!/« = /.

n=oo "-n

Let

= tn+X, Uq — I,

Un

then

Un = titi • • • tn-

Accordingly, whenever

n=«o

then

L (/1/2 • • • Lf" = t,

«=«

provided tn > o; and the last equation may be written

-r ( log h + log t 2 -\- • ' + log tn \

And if we finally write log /„ = 5„, we obtain the result that

L = ^

n=ao W

whenever
J_J Sn — S.

7l=co

This statement is, however, precisely Theorem c. We see

accordingly that Theorems c and K are equivalent, by means of

the substitution

* Cours d'Analyse: Oeuvres de Cauchy (2° serie), Vol. 3, pt. 3.

33
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Un

Let us make the further substitution 5„ = rn(Pn, and observe

that the variables 5 „ and r„ on each side of this equation approach

the same limit, provided

Ju <Pn = I-

We may accordingly replace Theorem c, which we have just

obtained again, by the following theorem:

Theorem 6: If

Tj Tn = r, and L/ cpn = i,

then

n=^\_ n J

If we put a further restriction on the sequence <^n we can

broaden the requirement on the sequence r„. In fact, we may
say:

Theorem 7: //

X ri + r2-\- ' " -]- Yn
Li = r,

n=» n
and

monotonically* then

* That the theorem is not true in general, when

^ <Pn = I
n^ CO

not monotonically, follows from the example:

r„ = (- i)"+MogM, v^n = I + (- 1)"+' -^, «+i, fi=i.
log n

Here

T ^1 + •
•

• + ''" ^ T-Li =0, 1j ^„ = I
«= CO M n= cc

wo/ monotonically;

I.L,
yi?"! + • • • + 'P«?'n

»—
- 00 n
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LtpiU + (p2r2 4- • • • + <Pnrn _
y

n=oc W

The proof of this theorem follows at once from the following

theorem due to Hardy;* for a proof of which see page 85.

Theorem l: // 2c„ is a divergent series of positive terms, then

T ^0^0 + ^1^1 + • • • + CnSn _ J ^0 + ^1 + • • • -\- Sn

«=«, W + I „=„ W + I
'

provided that the second limit exists and either

(a) Cn steadily decreases,

(b) Cn steadily increases, subject to the condition

nc„ < (co + ci + • " -\- Cn)K,

where K is a fixed number.

We shall now show that Theorem 7 is a special case of Theorem

L. In the first place, since

Jj (pn = I,

it follows from Theorem c that

L<Pl -{- <P2 -\- • • ' -\- <Pn = I,

n— 00 n

and accordingly,

J <Piri + ^2^2 + • • • + <Pnrn

n=ao n

(Piri + (^2^2 + • • • + <Pnrn Vl + 9^2 + ' ' " + <Pn

^1 + ^2 + • • • + <^n

<Piri + (pzrz + • • • + <Pnrn

<Pl -\- <P2
-{-''' -\- fn

We may now apply Theorem L directly, by identifying ^„

* Quarterly Journal, Vol. 38 (1907), p. 269. Hardy proves a more general

theorem of which this is a special case; the first part of the general theorem has

been first proved, however, by Ces^ro, as Hardy himself states. See Cesiro:

Bull, des Sciences math. (2), t. 13, 1889, p. 51.



36 UNIVERSITY OF MISSOURI STUDIES

with Cn. If Vn decreases monotonically, the condition of the

first part of Theorem L is fulfilled; if v'n increases monotonically,

we have:

^1 + ^2 + • • • + <Pn > W^l,

or

so that

^ T-^ (^1 + <P2 + • • • + ^r)
ipn< IS.

-
,

n

which is precisely the second requirement of Theorem L. Hence

the truth of Theorem 7 is established.

We can deduce an interesting consequence from Theorem 7,

and say, in the language of § 4,

Theorem 8 : The natural product of two sequences, one of ivhich

is summahle of order i, the other monotonically convergent, is

summahle of order i ; and the value of the product sequence is

equal to the product of the values of the two given sequences.

Let Sn and /« be the two given sequences,

L -^l + -^2 ~t~ • • • -^ Sn -|-— S, l^tn — t,

71=00 '' n=a)

monotonically. We first suppose that / =]= o, and form the

sequence tjt, so that

Lfn

«=« t

monotonically. Accordingly, by Theorem 7,

^1 , ^2 , ,
in

-L = 5

or

lu = St.
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If / = o, we form the sequence i + /„, so that

L (i + /J = I
n=oo

monotonically ; consequently, by Theorem 7,

^ ^ J^
^1( 1 + h) + 52(1 + /2) + • • • + ^n(l + tn)

«=«> n

^ J
-^1 + •?2 + • • • + Sn -|- ^1/1 + 52^2 + • • • + Sntn

n=co H n=tx> W

and accordingly,

lu = O.
n=oo n

Let us now return to Theorem 6, and base upon it the following

definition:

Definition : The sequence shall be said to be <p-suinmable, and to

have the value s, provided

LSl<Pl -\- S2(P2 + • • • + Sn<pn

n=ca n

L <pre = I.

It is natural to ask for the relation between <p-summability

and Ces^ro-summability, In general it will be possible to find a

sequence <pn which will give a more general definition than that

of Ces^ro-summability of order i. We can however restrict the

sequence ^„ so as to make the two definitions equivalent ; and we

may state the following theorem:

Theorem 9: If

monotonically, then whenever either of the two definitions—^-

summability or Cesd,ro-summability of order i

—

gives a value to a

given sequence, so will the other, and the two values will be the same.

T^
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If we choose any specific sequence ^„, subject to the condition

n=«>

monotonically, then it follows at once from Theorem 7 that if

a sequence is summable of order i, it is also ^-summable for

the particular ^„. Let us now suppose, conversely, that the

sequence 5i, 52, • • • 5„, • • • is ^-summable for ^„, i. e.,

Li = s.

This amounts to saying that the sequence (5„<p„) is Ces^ro-

summable of order i. Let us now apply Theorem 7, making

r„ = Sn^Pn, and (p„ = i/lpn- Since

monotonically, then

monotonically, and

_ J pl^l«pl + S2(P2<P2 + • • • + ^n^nlpn"] _ j Si -]- S2 -\- ' • • -\- Sn

«=1 L n J „=„ n

i. e., the given sequence is Ces^ro-summable of order i.

If we assume that

L «Pn = I

non-monotonically, then Theorem 7 may no longer apply, as

is shown by the following example:

r (fi = 1

Si = (- i)'+Mogi^ I

so that

^' = ' + (-"'"i^-'=^'3'

Si<pi = o

Siifi = I 4- (- 1)'+^ log* = I -\- Si, i = 2, 3,
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Now

T ^1 + ^2 + • • • + -^n _ J
log I - log 2 + log n

= o'

and

71=00

non-monotonically.

If Theorem 7 were true, ipn non-monotonic, we should have

JL = o;

whereas,

J
Siipi + ••• -\-Sr.ipn _ y log I + (l + ^2) + ' ' ' + (l + Sn)

= Li 1- JL = I.

n=a) ^ n=oo W

Returning now to the monotonic ^-definition, we observe that

if we take <pn — i, we obtain Cesaro-summability of order i.

Taking

we obtain:

r5ilog2 + 52 log (I + hY + ^3 log (I + i)' + • •
•

+ 5nl0g(l+^)
(6) 5 = L

* L - 2 (-i)«log.= i L log
0-3--^^"-^^

)n= « 2n i=i
*"

2 n= « *" \2 • 4 • • • 2« /

- li log ttn''" = O
2 n= »

Also

L -^''3\-i)-log.- = o+ 3. 12^(^5^11) = o.
n= » 2« + I if1

" ^ n=* 2M + I
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.,ii'°«(-+0"=

monotonically, however, it follows that this definition is equiva-

lent to Ces^ro-summability of order i, or (what amounts to the

same thing) equivalent to Holder-summability of order i. If

we now write

5l + 52 + • • • + Sn
tn

so that

ntn - {n - l)tn-l = Sn,

we may repeat the process for the sequence tn, obtaining

/l log 2+ /slog (I +^)2+ ••• +/„log(^^-^j

= L
5ilog2 + (51+^2) login h(5i+52H h^Jlog

«+ I

(7) 5 = L
Si log ;— +52 log ;— + • • • + 5„Iog

« 4- I

Since (6) is equivalent to the Holder-summability of 5„ of

order i, it follows that (7) is equivalent to Holder-summability

of /„ of order i, i. e., with Holder-summability of 5„ of order 2.

Let us now return to our definition of v'-summability, and

repeat the process for another function i/'(w), where

Ij )/'(«) = I,
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Writing

we obtain

tn =
ip{\)si + (^(2)52 + • • • + ^{n)Sn

n=«> L

+ rP{2)t2 + ^P{n)tn

(8)

= LJ
5i <p(i) ^ 4^{i) + -^ + • • • + -^

+ 52^(2) \
-~ -\ H H h5rt<p(w)

——

-

Now, if

then

and

Li (p(n) = L/iACw) = I,

L-r <Pl -{- <P2 -\- • • • -\- (Pn

n=i» n^ico

lA (i)ri + )A(2)r2 + • • • + </'(")''«

(9) _ L
7i=00 ^

«P(I)W(I) +^+ ••• +"^

+ <P(2){
;A(2) "AW V'(")

2 w J n

= I.

Instead of taking

Jjifin) = Iji/'(«) = I,

we shall assume more generally that (9) is satisfied, and take as

our definition,
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(lo)

sMi)\ "Ail) + -7— + • • • +
L 2 n

V(2) . , iACh)

r = s,

If v'(w) = i^-Cw) = I, we obtain:

= L N[.+i+ •••+^]+4^+ ••+',]+ •+4^

X r 5i + 52 5i + 52 + 53
,

5i + 52 + 5„
= jL J 5i + •—-— + : h • • • H

= 1j where /„ =
«=.« L w J

which is Holder summability of order 2.

If

5i + 52 + • • • -h Sn

(p{n) = 2«, \p{n) =

we obtain:

5i2

W + l'

5=L
»= 00

+ 52-2

[1.2+2.3+ ' '^n{n + i)J
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= L
n=oo

2« (2n — i)
•^1 TT~T + -^2

, . + • • • + Sn
W + I W + I

2

(w + l)

W5i +(W - l)52 + ••• +^n
;

w(w + l)

2l

which is Ces^ro-summable of order 2.

If we put

(Pn ^ I, "An = W log( I +
-J,

we obtain:

5 = L

>l|log2+log^I+^) + ••• +log^I + M|

+52{l0g(l+^)+. . • +log (i+^)} + . . .

+.n{l0g(l+^)}

Si {
(log 2 - log l) + (log 3 - log 2) + • • •

+ (log (W + l) - log «)!+•••+ 5„ [log
^ I

71 -\- I « 4- I , W + I

5i log
;^

+ 52 log + • • • + 5n log

which is (7).

We have thus seen that the definitions of ^-summability and

(10) include some of the specific definitions which we have already

discussed. One might naturally ask, however, whether these

general definitions themselves may be of any use. One use

immediately presents itself, as can be seen in the following

example.
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It is desired to know whether the scries given by

Si = / v", i = odd

i\og(-0
=

, 1 = even

is summable* according to Cesaro's definition; and if so, its

value is required. To determine this directly from Cesiro's

definition requires some manipulation. If we choose, however,

<Pi = i log (n).
we obtain

Siipi + Si(p2-\ \-Sn^n _ J
1 + 0+ I + o H [- o or I

n

n n
- or - + I

m=oo 11'

And since

L ^n = I
7l=co

monotonically, it follows that

L-
^i + ^2 + • • • -\r Sn

1— 2-
n^o. n

This example leads us to formulate the following proposition,

which is of practical importance:

Theorem io: To test a given sequence for CescLro-siimmahility

of order I, a7iy cojivenient ipn niay be chosen, provided

n=oo

monotonically

.

Similarly we may sometimes simplify our calculations in

testing for Cesaro-summability of order 2, if we can find a

suitable (pn and \pn.

* This example has been already considered from another standpoint.

See p. 22.
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We might now proceed to generalize to /)-functions, and show
that the resulting generaHzations would include all of Ces^ro's

and Holder's definitions. And from what has preceded, it is

easily seen that if we take all the />-functions equal to unity,

we shall obtain all of Holder's forms; while by a suitable choice

of these ^-functions, all of the Ces^ro-forms might also be ob-

tained. But though the process is quite clearly defined, the

algebraic details become too complicated to carry this work
any further. The fact, however, that we may use, as a definition

of summability, the limit of an expression in which the coeflficients

of the Si are not specifically named, but are given in terms of

functions satisfying certain conditions, suggests a more general

view of summability, which we shall proceed to develop in the

next article.



§ 6. DEFINITIONS OF EVALUABILITY

We have now considered a large number of definitions of

summability. It is natural to ask whether all those definitions

do not have some common properties. Excepting for the moment
Borel's definitions, to which we shall return later, we can say

that all* the definitions of summability which we have considered

have the following properties in common:

If Uiin) represents the coefficient of Si in any of the expressions

whose limit gives rise to one of the definitions of summability,

then:

(i) L ai(n) = o, for fixed i,

(ii) L [ai{n) + a^in) + • • • + a„(w)] = i,

(iii) ai{n) >t o for all i and n.

That properties (i) and (iii) are common to all* of the definitions

under consideration is easily verified. We proceed to show that

the same is true of property (ii). Beginning with Ces^ro-

summability of order r, we shall show that the sum of the coef-

ficients of the numerator, divided by the denominator, is iden-

tically equal to unity. For this purpose we write:

(i - :t)-('-+i) = (i + X -1- x2 + jc3 • • • + jc" + • • •)(! - x)-\

Equating the coefficients of x" on each side of this identity, we
obtain

:

(r -{- i)(r -\- 2) • (r -{- n) r{r + i)

nl
-i+r + -^T-+---

r(r -\- i) • • (r -]- n - i)

* We exclude also definition (lo).

t The equality sign occurs in the case of convergence.

46
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SO that:

r(r + i) (r + 2) • • • (r + w - i)
,

r(r + i)

(r+ i)(r + 2) ••• (r+w)
-^•

«!

Turning now to Holder's definitions, we observe that for

order i, the sum of the coefficients of the Si is identically equal

to unity—this being in fact a special case of the case just con-

sidered. Suppose now that hi, hi, • • •//„ are the coefficients of

Holder's definition of order p, so that

Ij [^i5i + hiSi + • • • + hnSn] = s.
71=00

If we assume that hi -\- hi -{- • • • +/;„ = ! for order p, we
obtain for order p -\- i, putting

^" ~ n

-L hiti + hi
—-— +•••+//„

n=:« L 2 n J

n

hn

n

and the sum of the coefficients becomes

r,,+^^+...+'i.i+r^'+...+^-^]+...+
L 2 n J i_ 2 n J

= hi -{- hi -{- • -\- h„ = I.

Thus the proof of (ii) for Holder's definitions is completed by

mathematical induction.

Let us now consider formula (7). We shall show that

Ij w„ = I,
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where

log - + log ^ + • • • + log ^^-3^

n
«„ =

If

then

Hence

Accordingly,

( n n « X;:

n n
Vn = -

I 2 n — I (w — i)

!

Pn+l (-;)

'rt=oD 71=0) <'

n

Ll nn = L/logi'n''" = I.

Finally since we have assumed in the (;c-definition that

Ij ip{n) = I,

n=oo

it follows that

y(l) + 'p(2) + • • • + <p(n) _
, _Li

' — I

n=oo ^

by Theorem c.

Thus it is seen that all* of these definitions have properties

(i) to (iii) in common. We can accordingly generalize our notion

of summability by stating a definition in terms of these properties

themselves.

Definition; A series shall he said to be A-evalnable,\ and to have

the sum s whenever the following conditions are fulfilled :

* Except definition (10)

t We shall hereafter use the term evaluable in the case of definitions in

terms of properties of general functional coefficients of the st; the word suni-

mahle we shall retain for concrete definitions with specific coefficients.
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(i) Ij ai(n) = o, for fixed i,
71=00

(ii) L [ai{n) + ao{n) + • • • + a„(w)] = i,
n=:oo

(iii) a,(w) > o,

(iv) Tj [aiin)si -\- 02(^)52 + • • • + an{n)sn] = s.

49

We shall now justify this definition by proving the following

theorem

:

Theorem ii : If a series is convergent then it is A-evalnahle*

By (iv) we may write:

(v)

[ai{n) + Giin) + • • • + an{n)] + r„ = i,

Now, by (v),

I
cii{n)si + ai{n)s2 + • • • + an{n)sn — s

\

=
I

{ai(n)si + a2{n)s2 + • • • + anin)Sn}

- (ai(«) 4- a2(n) + • • • + a„(w) + r„)5
]

< I
ai{n){si - s) + a2in)(s2 - 5) + • • • + ap{n){sp - s)

\

+ 1 ap+i{n){sp+i - s) + • • • + a„(w)(5„ - 5) 1 + |
r„5

|
.

Since the series is convergent, we can choose i so large that

\si - 5I < ?7, i > p.

Let / be the largest of the numbers
\ Si — s\, (or i = i, 2, ••• p.

We have, then,

I
aiin)si + a2{n)s2 + • ; • + an{n)sn — s

\

< {ai{n) \sy - s\-\- •• -\- ap{n) \sp - s\\

* Theorem 1 1 obtains if condition (iii) is replaced by the broader condition:

|ai(w)l +|a2(»)l + ••• +|a„(M)| < K.
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+ {aj,+i{7i)\sp+i - 5l + • • • + an{n)\s„ - 5|} + \rns\

< {aiin)-\ \-ap(n)}l+{ap+i{n)-\ \-an{n)]r]-\-\rns\

< 81 + v + \rns\, n> N*

= e.

Hence

Tj [ai{n)si + a2{n)s2 + • • • + a„(n)Sn] = s.

Our definition of i4-evaluability is now justified.

The question naturally suggests itself as to whether for a

sequence (5„) which diverges to + 00,

n

Jj ]C«.(w)5i = + 00.

The answer, which is in the afhrmative, is embodied in the fol-

lowing theorem

:

Theorem iia: //

Ij5„ = + 00,
n=oo

and conditions (i), (ii), (iii) are satisfied, then

11

Ij ^ai{n)Si = + 00.

n=QO i=l

By hypothesis, Sn > N, n > m. Hence

n m n

On = ^ai{n)Si = '^ai{n)si + 2J ai{n)si
i=l i=l »i+l

m n

> ^ai{n)Si + // X) «»(«)•

* By (i), [ai(«) + • • • + ap{n)] < 8, n > N, p having been chosen first,

and then held fast. By (iii), [ap+i{n) + • • • + c„(n)] < [ai(n) + • • • + a„(w)]

< I by (ii).



DEFINITION OF SUM OF A DIVERGENT SERIES 51

Since
[m. n -j

T,ai(n)Si + N Y. a.(n) = N,

it follows that

Minimum Ij cr„ > iV;

and since N is an arbitrary number,

We have seen that the generalized definition includes a large

number of the specific definitions of summability which we have

considered. But we see now that if we take any functions

whatever for ai{?i), subject merely to the restrictions (i), (ii)

and (iii), we may obtain a possible definition of summability.

Thus, we may take as our definition, for example.

(II) 5=L
^1+7 +

2
+

log n

Sl-\--S2-\-
2

-\--Sn
n

!+,+ +
71 -^

This formula is of interest to us, since it affords an example of

a definition which is broader than Ces^ro-summability of order i,

and yet perhaps not so general as that of order 2. For since

i/w steadily decreases, it follows from Theorem 8 that formula

(11) gives a value to all series that are Ces^ro-summable of

order i, and that these values are the same for both definitions.

That (11) is really more general than summability of order i

follows from the example i— 3 + 5 — 7 + ---- This series

is not summable of order i , since

— + o;
n-—oa ^

however we obtain from (11), for the corresponding sequence,
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['
- I + I - I

J n=« L log W Jlog n

Nevertheless, (ii) is probably not equivalent to summability

of order 2, as the following reasoning suggests. A necessary

condition that a series give a result by (11) is

Un

n=oo n log n
= o.

This is not, however, a necessary condition for summability of

order 2 f—so that we might find a series for which

«=« n log n
+ 0,

which is nevertheless summable of order 2.

We have seen that the .4 -definition includes most of the cases

of summability which we have discussed, but we have been

obliged to omit Borel's definitions. In order to include the Borel-

mean-definition, we shall now generalize Theorem 1 1 , as well as the

definition which we have based upon it. Replacing a,(«)

by ai(a), where a may be independent of Ji, Theorem (11) may
be stated in a more general form:

Theorem 12: From the conditions:

*o= L.
n=oo

S\ + 5^2+ •" -\ 7- .Jn+ l 5i +^52+ • • • + '-Sn
n -\-\ n

i+h + ••• +
n +1

u„

1+1+

Sn — Sn-l

+ -

Sn

n= oon log,

„=«,«log„ n=oo nlogn

t A necessary' condition for summability of order 2 is

tin

See p. 10.

7i= 00 W
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(i) L ai(a) — o for fixed i,
0=00

(ii) L [ai{a) + a2{a) + • • • + a„(a)] = i,
n=ao

(iii) ai(a) > o,

(iv) 1j Sn = S,

53

may be deduced the result:

Tj Ij [ai{a)si 4- a2ia)s2 +
a=oo n=(»

+ a„(Q!)5„] = 5.

We shall first show that

Tj [ai(a)si + a2(a)s2 + • • • + ar,{a)Sn]
TO=00

exists for every definite a. Taking a definite value of a,

\a„{a)Sn + an+i{a)Sn+i + • • • + a„+p(«)5„+p|

< an{a)\Sn\ + • • • + an+p{a)\Sn+r

<j'Ahy (ii) {(n > N, anyp))

= e.

Hence

Zlanioc)Sn
n=l

converges for every value of a. Since

zlan{cx)Sn

has a sense, we may write:

z2an{oi)Sn — S X an{oi)Sn — 2 «n(a) ' s\ by (ii)
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53 On (a) (^n — s)

m—l

< ^an{a){s„ — s) + S an{a){Sn-s)

< H^an(a) + e,

since \sn - s\ < e, n > m, and \sn - s\ < H, n < m by (iv).

Since, however,
TO—

1

by (i), it follows that:

Maximum Ij ^an{a)Sn—S <e -\- Maximum J^ Hz^ CLnict) =^-
0=00 n=l

Since e is arbitrarily small, the maximum limit on the left must

be zero, and therefore the actual limit is zero, i. e.,

00

Ij 53 an{a)Sn = s.

a=oo n=l

It is readily seen that Borel's mean-definition satisfies con-

ditions (i) to (iii) of Theorem I2. For we have, in satisfaction

of condition (i),

L^=o;
0=00 '-

that condition (ii) is satisfied follows since

a a''

^+^ + 2-.+ +
= i;

and finally, since a^/e" > o for a > o, it follows that (iii) is

fulfilled.

We might accordingly generalize our definition of evaluability,

to include Borel's mean-definition, by using the hypotheses (i)

to (iii) of Theorem I2 as a basis. It turns out, however, that

we may generalize Theorem I2 still further, and that we can

accordingly obtain a still more general definition of evaluability.
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Let US take as coefficients of the 5, functions of both n and a,

and write:

(i) J^ ai{a, n) = o,
n=oo

n

(ii) L S cii{a, n) = I,
n=oo t=0

(iii) ai(a, n) > o.

If now these conditions are fulfilled for a fixed value of a,

and if

JLJ Sn = S,
n=oo

it follows from Theorem 11, that

n

Ij 2 Oi(«, W)5t = 5.

n=oo i=0

Since this limit exists for every value of a, under our hypothesis,

we may write:
n

(iv) L Li S Oi(a, n)si = s,

a=oo n—co i=0

and a definition that readily suggests itself, even when the series

is not convergent, is that conditions (i) to (iv) be fulfilled.

We have demanded at the very start, however, that every

definition should satisfy certain fundamental requirements,

which we have enumerated on page 2, and while the definition

proposed does fulfil the first two of those requirements, as we

have just seen, it does not fulfil the third requirement* without

further restrictions on the coefficients.!

Our third fundamental demand was that when the series

«o + Wi + W2 + • • • + w„ + • • • has the value s, then the

series Wi + W2 + • • • + «n + • • • must have the value s — Uo;

* The same is true, of course, for the ^-definition; we have deferred the

similar considerations for that case, since they may be included under this

more general one.

t It is obvious that the fourth and fifth requirements are also fulfilled.
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or stated in terms of sequences, if Sn = Uq -\- Ui -\- • • • + w„,

when the sequence So, Si, 52, • • • Sn, • • • has the value s, then the

sequence Si — Uo, S2 — Uo, • - • Sn — Uo, • • - has the value s — Wo-

lf we assume, for the moment, that whenever either one of the

two sequences

•So» -^1. S2, • • ' Sn, • '

^1) ^2, ' ' ' Sn, ' '
'

has the value s, the other does also; then we shall satisfy our

third requirement if we prove that whenever Si, S2, ss, • • • Sn, • • •

has the value s, then ^1 — Uo, S2 — Uo, Sz — Uo, • • • 5„ — Mq, • • •

has the value 5 — Wo- Now this it is easy to prove. For we
have by iv, p. 55,

n n

Jj Ij Y1 ai{c(,n){si-th)= J^ Tj^ aiia,n)Si-Uo = s— Uo
0=00 n=m i—0 a=oo n=oo i=0

by (ii), p. 55.

It remains then to consider under what restrictions we can justify

our assumption that the two sequences

So, Si, 52, • • • Sn, ' ' '

S\, S2, ' • • Sfi, ' ' '

always have a value together. To get an idea as to the nature

of the condition which we shall have to add, let us consider, for

concreteness, what happens in the case of Borel's mean-definition.

Using the notation of page 12, we have:

a a- a"
S{a) = So + Si- -\- S2—.-{- '' + Sn—.+ ",

I 2

!

n I

a .n-l

S\a) = 5l + 52 - 4- • • + Sn 7-
"Vj +I [n — i)\

a d" oi"'
^

s'{a) - s{a) = Ui + «2 - + «3 --, + • • • + Un 7 -T, +
I 2 ! \n — I^ !

Borel's definition being
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If we assume* that L s{a) = oo,
a— CO

we have an indeterminate form, so that

L s'(a) — s(a)

or

= o,

which may be written,

T T a r .

<^ a^ 0!"~|

It is accordingly suggested that we assume, in general,

(v) L Ij [ao(a, n)ui + 01(0;, «)w2 + • • • + fln(a, w)w„+i] = O.
o=ao n=oo

As a matter of fact, this condition is sufficient,! for, from (iv)

(iv) Ij Ij [aoia, n)so + ai{a, n)si + • • • + an(a, n)sn] = s and
a=ao n=oo

adding (iv) and (v) we obtain

Ij Ij[ao(Q:, n)si + ai{a, ?i)s2 + • • + an{a, n)sn+i] = s,

a=ao n=oo

which proves that when the sequence 5o, Si, • • • 5„, • • • is eval-

uable to s, so is the sequence ^i, S2, ' - • Sn, • - - • By subtracting

(v) from the last limit we show in the same way that when the

sequence Si, Sz, • • • 5„, • • • is evaluable to s, so is the sequence

^0, ^i» ^2, ' • • Sn, • • • . Thus, condition (v) causes our definition

to satisfy the third requirement of page 2. If we wish to be

able to drop any finite number of terms, we shall have to

require a condition more general than (v), as we shall do in the

following definition:

* This assumption is not essential, since our object is simply to arrive at a

certain condition on the a,(a, n).

t Condition (v) is not satisfactory since it is a condition on the sequence,

as well as on ai{n, a). It would be desirable to have on ai{n, a) further re-

strictions, sufficient to cause (v) to hold for all sequences.
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Definition: A series shall he said to he B-evaluahle and to have

the sum s whenever the following conditions are fulfilled:

(i) Ij a.(a, n) = o,

n

(ii) L ^ai{a, w) ^ I,

B

n=oo 1=0

(iii) ai{a, n) > o,

n

(iv) L Ij Yioiia, 7t)si = s,

a=oo n=oo i=0

n

(v) Ij L S«i(Q:, w)m,+A; = 0, ^ = I, 2, • • • /).

a=oo n=ao »=0

We have seen that this definition includes all of the definitions

of summability which we have considered, except possibly the

Borel-integral definition. We have not yet subjected this

integral definition to the test of our fundamental requirements;

let us now do this.

That requirements (i) and (ii) are satisfied follows from the

following theorem:* If

Ij Sn = s,

then

where

/»C0

Jo
e~''u{r)dr = s,

u{r) = Ua -\- Ui--\-U2— + + M„ —
, +

It is obvious, too, that requirements (iv) and (v) are satisfied. Let

us accordingly limit our considerations to requirement (iii) . With

regard to this requirement we have the following state of affairs rf

* Hardy: Quarterly Journal, Vol. 35, p. 22; Bromwich, loc. cit., p. 269.

t The quotation is taken from Bromwich, loc. cit., p. 271. The first of the

propositions was proved by Borel, loc. cit., p. lOi; Hardy proved the second

proposition by an example: Quarterly Journal, Vol. 35 (1903), p. 30.
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"Any finite number of terms may be prefixed to a summable
series, and the series will remain summable. . . . But the removal

of even a single term from the beginning of the series may destroy

the property of summability."

Inasmuch then as the integral-definition fails to satisfy one

of our fundamental requirements, we are obliged to rule it out.

In fact Borel himself ruled it out,* replacing it by absolute

summahility .'\ This definition does satisfy requirement (iii),

as Borel proves, J and it obviously satisfies requirements (ii),

(iv) and (v). Furthermore, Borel makes the statementi that

convergent series are always absolutely summable. Hence it

would follow that the definition of absolute summability is to

be retained, since it seems to satisfy all of the fundamental

requirements.

But Borel's statement that convergent series are always

absolutely summable, is incorrect, as Hardy § has shown by the

following example:

Un =
-.— , n =1^,

y-Un = o, n not a square.

In fact the series in question

:

-1+0 + + 1 + + + + 0-^+ •••

is convergent, while

e~'^\u{r)\drft/o
is divergent. Thus, since absolute summability fails to satisfy

*Loc. cit., p. 99.

t See p. 14.

X Loc. cit., p. 100.

§ Hardy, loc. cit.
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the first fundamental requirement, this definition too cannot be

retained.*

We have seen that the J5-definition satisfies all of our funda-

mental requirements, and that it includes as special cases all

of the proposed definitions of summability which satisfy those

requirements. Our definition of 5-summabiIity is accordingly

justified.

We proceed to the statement of the following definitions:

Definition i : A series shall he called abstractly-evaluable, and

to have the value s, if the following conditions are fulfilled :

(a) L [ai{n)si + a2(n)s2 + • • • + a„(n)sn\ = s,

n=oo

(b) the fundamental requirements of page 2 are satisfied.

Definition 2: An abstractly-evaluable series of functions of a

variable shall be called uniformly evaluable, if:

L [fli(w)5i(x) + a2{n)s2{x) + • • • + an{n)sn{x)]

= L f{x, n) = s{x)
n—x>

tmiformly.

From these definitions follow at once several theorems.

Theorem 13: A uniformly evaluable series of continuous

functions represents a continuous function. '\

For f{x, n) — ai{n)si(x) + • • • + an{n)snix) is a continuous

function of x; and since

Hjfix, n) = s{x)
'H— ao

uniformly, it folloAVS that s{x) is continuous.

Similarly, we should obtain in the usual way, the following

two propositions:

* It is for this reason that we omit from further considerations the integral

definition and the extended definitions given by Borel himself and by Le Roy.

See p. 14, supra.

t The same proof applies when the continuity is with respect to some

assemblage.
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1

Theorem 13A: ^ sufficient condition that an abstractly-evaluable

series of continuous functions represent a continuous function is

that the related sequence, f(x, n), have Dini's simple-uniform con-

vergence*

Theorem 13B: A necessary and sufficient condition that an ab-

stractly-evaluable series of continuous functions define a continuous

function is that fix, n) have ArzelcL's quasi-uniform convergence.]

Theorem 14: A uniformly evaluable series of continuous

functions may be integrated term by term.

We wish to prove in this case that

I Li [ai(w)5i(x) + a2{n)s2{x) + • • • + an(n)sn(x)]dx
da n=ao

= Ij I [ai(n)si{x) + ao{n)s2(x) + • • • + an{n)sn{x)]dx

or
nb pb

I 1jf{x, n)dx = Ij I /(x, n)dx,

but this equation is precisely a statement of the theorem that

a uniformly convergent sequence of continuous functions may be

integrated term by term.

Theorem 15: If a series of continuous functions is convergent

for all values of x in an interval, except possibly for x = x^; and

if two sets of functions ai(n), bi{n) render the series abstractly-

evaluable at Xo, to the values s and t respectively; then, if the evalua-

bility of each of the definitions is uniform in the interval, then s = t.

Letting
n

f{x, n) = '^a^{n)Si{x),

and
n

g{x, n) = ^bi(it)si(x),

* Dini: Fundamenli per la teoretica delle Funzioni di variabili reali. Pise,

1878, p. 103.

t Arzelcl: Mcmoires de Bologne, 1899.
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and remembering that since the series is convergent, x + :^o,

it is true that

Li/(.T, n) = Ijg(^, n), X 4= Xo,
n=oo re:=oo

we have from the uniformity,

Li Jjf{x, n) = Jjfixo, n) = sA

L/L g(^, «) = L §(^0, n) =,i
I

and hence s = t.

We may obviously state the preceding theorem in the following

more general manner:

Theorem 15A: // a series of junctions continuous on an as-

semblage (E) is cofivergent at all points of (E), except possibly at

X = .To, which is a limit point of (E); and if two sets of functions

diin), hi{n) render the series abstractly-evaluable at xo, to the values

s and t respectively; the?i, if the evaluability of each of the definitions

is uniform on {E) , it follows that s = t.



§ 7- APPLICATIONS

We shall first consider an application of the definition of

abstract evaluability to integral equations, and we shall obtain a

generalization* of a theorem due to Volterra, f Let us seek for

a continuous solution of the integral equation,

u{x) =Kx)+ f K{x, ^)uWd^,

where K{x, y) is continuous,!

{a<x<b]
I a < 3' < 6 J

and f(x) is continuous, a <, x <_ b.

Following the method of Volterra, we shall form the iterated

functions:

rKi{x, y) = K{x, y),

(12) \ r^

[K,{x, y) =J K,{x, OKi-^U,y)d^.

Then

Ki(x, y) = \ K{x, ^{)K{^u h) - - K{U-i, y)dl^i., - • • d^.

and

Ki+iix, y)= f Ki(x, k)KM. y)dk-

* Our result is more general if we restrict ourselves to Volterra's method;

a much more general result has been obtained by Fredholm by means of a

different method. See Acta Math., Vol. 27 (1903), p. 365.

t Rendiconti, Accademie del Lined, series 5, Vol. 5, 1896.

X The theorem can be proved with much broader restrictions on K{,x, y).

63
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If we first put i = I, i -{- j = m in this formula, and then put

j = I, i -\- j = m, we obtain:*

(13a)

(13&) Km{x, y) = f Km-iix, OK^a, y)dl

Volterra now proves that if the series Ki{x, y) + • • • + Kn{x, y)

+ • • • converges uniformly in s, then the integral equation has

one and only one continuous solution. We shall prove, more

generally, the following theorem:

Theorem 16: 7/ the series Ki{x, y) + • • • -{ Knix, y) -\- - • • is

uniformly evaluable in the abstract sense, then the integral equation

has one and only one continuous solution.

Since 21 Ki{x, y) is evaluable,

- ki^, y) = Xi(^, y) + K,{^, y)+ + K^U, y) + ---,

and by our fundamental requirement (v), p. 2,

- k{^, y)K,{x, = K,ix, OKii^, y) + ^iC-^. ?)^2(^, 3') + • •
•

+ i^i(x, OKn(^,y) + ....

Moreover, the last series is uniformly^ evaluable.

Hence we may integrate term by term, by Theorem 14, obtain-

ing

- r K{x, ^)k{^, y)d^ = f K,{x, ^)Xi(?, y)d^

Jr>b
r*b

' K,{x, ^)K2a, y)d^ + .
.

• + I K,{x, k)Kn{^, y¥k + • •
•

= K,{x, y) + Kz{x, >')+•••+ Kn+i{x, y) -\- -

* The first of these two formulae is the same as the definition of Kmix, y).

t The uniform evaluability can be established in precisely the same way
as in the case of convergence.
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by (i3«)- The series last considered has for its value,

— k{x, y) — K\{x, y) so that

K{x, ^)k{^, y)d^ = K(x, y) + k{x, y).f
By using (13&) in a similar fashion,

W. ^)K{^, y)d^ = K{x, y) + k{x, y).f
The rest of the proof is the same as that given by Volterra,*

who obtains as the unique continuous solution:

(14) u{x) =Kx)- f Hx, mOd^.

It is not difificult to construct an example for which the series

K.i{x, y) -\- ' ' ' + Kn{x, y) -\- • • • does not converge but is,

for example, Ces^ro-summable of order i. Let us look for a

continuous solution of the integral equation:

2 n
u{x) = I + ~

I
sin (:k — y)n{y)dy.

TT Jo

Here

2 2
Ki{x, y) = -sin (x - y), K^ix, y) = - -cos {x - y),

TV T

2 2
Ksix, y) = - -sin (x - y), K^ix, y) = -cos (x - y),

and so on, so that the series becomes

- k{x, y) = T,Ki{x, y)

= - sin (x — 3') — - cos (x — y) ( i — i + i — i H )

,

LtT TT J

which is not convergent. Its summable value (Ci) is, however,

— k{x, y) = -[sin {x — y) — cos (x — y)]
TT

* Volterra, loc. cit.
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SO that our solution will be:

I r
u(x) = I + -

I [sin (x — 3') — cos (x — y)]dy.
TT Jo

An interesting application of Cesaro-summability of order i

has been given by L. Fejer.* It is well-known that if a function

/(x) satisfies Dirichlet's conditions, it may be developed into a

convergent Fourier series. Fejer has shown that if f(x) is finite

and integrablef and of period 2t, then the Fourier development

corresponding to f{x) will be Cesaro-summable of order i to the

value

H/(^ + o)+/(x-o)]

at all points at which the function is continuous or has a finite

jump. A similar result has been obtained for the development

in terms of Bessel functions by C. N. Moore.

+

We proceed to the consideration of a similar theorem in the

case of the development of a function in terms of power series.

If we write:

(15)

^2 l,n-l

Sn =m + hf{a) + -r'{a) + • • • + J^^^^r^J-Ka),

Rn = f(a + h) - Sn,

then Taylor's Series with a remainder may be written

f{a + h) = Sn-\- Rn,

where it is found, on the assumption thatf'(x), • • • f'-"'^{x) exist,

in the interval (a, a -\- h), that §

(i6) Rn = -J"{a + eh), o < < I.
n !

* Math. Annalen, Bd. 58, 1904, p. 51.

^ fix) may become infinite at a finite number of points.

t Transactions, Am. Math. Soc, Vol. 10 (1909), p. 391.

§ This is Lagrange's form for the remainder. See Goursat-Hedrick, loc.

cit., p. 90.
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From (15) it is obvious that

(17) f(a + h)

if and only if

(17) f{a + h) =f{a) + hj'{a) +-,/"(a) +
^2

2
+ Z1 /"(«) +

n=<x>

If it should turn out that

IjRn = k ^ o,
n=ao

then it follows that the series of the right member of (17) cannot

represent f{a-\-h). But if Tj Rn does not exist, though the

series cannot then be convergent, it may be possible to choose a

definition of sum which will give for its value /(a + h). Thus

we obtain from (15) and (16)

- E 5i = /(a + /j) - - E ^i = /(a + h) - R„,

(18) Ri /(»)(a+ di)h,

Rn = ~ Z^ Ri-

As before, we consider three possibilities. If

JjRn = o,
n=ao

then

I "

1j -'^
Si = f{a -\- h);

n=co '^ t=l

if

I **

J^Rn = k ^-o, L - Z ^i + /(a + h);

I "

and if L i?„ does not exist, L - XI -Jt does not exist.

This result is not satisfactory as it stands, however, because

of the di which appear in (18), and which may dififer with i.
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We shall accordingly proceed to obtain another form for R„.

We have:

nf(a) + (« - i)/'(a) ~ + (n -2)f"{a) ^ + • • •

(iq) . h"-^ ;z"-i

- 2^ Si = .

w <=i n

For fixed a and h we let the difference

I -A* h^

n 1=1 P

and we consider the auxiliary function

^{x) =
1 1

nf{a + /O - [^/(.t) + (n - i) ^^^^=-^^/'(.t)

+ (n-2) ^ ^^, V"W + + 2
^,_,)! /-'W

,
(a + /'-.x-)

'"-"
,,„.„, .

,
(a + h-x)'

+ "
(„-,)! /'" "W + ^ "P

Since <p(a) = ^(a + h) = o, it follows that <p'{a + 6//) = o,

o < < I. But

n<p'{x) = - ^nfix) + {n-i) ^^-^^^f^fix)

+ («-2) -^ / (x) + ---+
(^_i), /H^)J

+ [(w - i)/'W + (tz - 2)
(^+^^^^-^)

^.(^)

+ (w - 3)
^^ + ^^~^)y

/(-,.) + . . . + (^ + ;, _.-,)P-i„p

(a + // — .t)"-i 1
+ ^,-1)1 /"C^) - (« + /^ - -t)-'«P

J
.

]
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Since <p'{a-\-6h) = o,

where

^ = a + 0/;, a + /? - ^ = /z(i - 0) = X, o < < i.

If we choose /> = i, we obtain:

(20)

lW)-^\f"i^)^l.Rn = hP = -\ no + 7/" (^) + r,/'"(^) +

+ zr^-TTiZ-K^) + 7rz-7y!/"(^)

}

± fn-Ut) + -A

If now

then

- Z ^f = /(a + h) - i?„,

7i=a> f^ 4=1

if and only if

I **

Ij i?n = O.

We have thus proved

:

Theorem 17: // the first n derivatives of f(x) exist in the

interval {a, a -\- h), then

/(a + h) = f(a) + - /'(a) + ^, f"(a) + . .
. + ^" /-(a) + • • •

,

where the infinite series is Cesdro-summable of order i, provided

luRn = O,
n=ao

where
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«.=:.] /'({) + 7/"(» +-yf"'i& +

^ = a + eh, \ = a -{ h - ^, o < 6 < i.

Turning now to the v^-definition,*

zL (PiSi

95 — Li n

we may obtain a form for the remainder similar to (20). We
shall put

n

2-1 ^i — fin
j=i

and obtain

n

.S^'^' I r /f2~ K0)ipin + hf\a)ip2n + —J"{a)nn +
In L

''
fin L 2

r fi
i=l

(w - I)!

We now define P by the relation:

+ zr—TV,/"~Ka)^n„J

fia+h) -— = -P = Rn
fin P

* This definition is the same as that on p. 37, since

n

because
l* ^n = I.

n=oo
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1

and we construct the function:

<P(X) =
\ <plnf(a + h) -\ <pi„f(x) + (P2n —, /'(X)

(a-{- h — xY ,,,, , (a -{- h — x)""'^

+ ^3n
'

^r-^f"(x)+ • • • + ^„„ (n-l)\
-^""'^^^

(a + h- ^y pi I

Since <p(a) = (p{a-^ h)=o, we must have <p\^)=o, ^ = a-{-6h,

o < ^ < I. But

«pi nip {x)=-{ iPlf'ix)+ ip2 f'\x)+ 953 —^ f (X)

H + <Pn '

'(n-i)\
-^"^^^ - (a + /^ - A:)p-Vini'

[

so that:

(w-i)! '

•pin I
I ! 2

!

and accordingly, if /> = i,

(21) i?„ = -:J^- [ <p,fa) + ^2^r(^) + m-^ra) + • •
•

We now turn our attention to the form of i?„ for the A-

definition. We set
n

^ aj{n) = ain

and obtain:

X) ai(n)si = }{a)ain + hj\a)a2n + • • • + } ;T7/''~H^)'^n»-
t=i [n — \)\
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We define P by the relation

«in/(a + h) - ^ainSi = hP = Rn*

and we form:fi d ~\~ h — X
ainfia + /O - ainfix) + a^n —^ f'(x)

1
(a-\-h-x)\

,,^
(a±h-x)--'

+ asn -j f"(x) + • • • + Qnn
}

;TT—/""H^)
2

!

{n— I j I

-\-(a-^h-x)P^ \.

Since (p(a) = (p{a + h) = o, we have for x = a + 6h — ^,

o = <p'(x) = -
I
a,{n)r{x) -\-a,(n)"^^^^y-^f"(x) +

(w - i)!
+ an(ii)^—iz 7TT—/"W -^J'

so that if, as before, h(i — 0) = X,

X«-i

P = ai(n)f'{0 + a2(«) r./'C^) + ^M -J"'{^) +

+ «»(^irT)y"(^)'
and accordingly,

i?„ = /^[ai(w)/'(^) + a,{ii)y^S"{^) + a3(«)^/'"(^) +

+ an{n) ,J' .,, /^"K^)]-(w - i)!-

We may now state our result so as to include Theorem 17 as a

special case.

Theorem 18: IJ the first n derivatives of f{x) exist in the interval

{a, a -\- h), then

* We previously assumed the form {hPJp)P and found /> = l most con-

venient; we here choose p = I at the outset.
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f(a -i-h) = f(a) + ~^f'(a) + ^/"(a) + • • • + -,Ma) + • • •,

the infinite series being A-evahiable, provided

J^Rn = o,
n=oo

where

R, = h^a,{n)n^)+a,{n)^f{^) + ' • • ^^M ^^^^^H^)^

^ = a+ eh, \ = a -i- h - ^, o < < i.

We proceed now to the proof of a theorem which will again

illustrate the possibility of obtaining results from very general

definitions.

Any specific definition for the value of a sequence shall be

briefly designated as a Z)-definition, if it satisfies the following

requirements:

(i) the definition gives the value s whenever L 5„ = 5,
n=oo

(2) the definition gives 00 whenever Ij 5„ = 00.
n=oo

It will be observed that every definition we have considered,

either of summability or of evaluability (except* Borel's absolute

summ-ability), is a P-definition.f

It is known that if a series converges for every rearrangement

of its terms, it is absolutely convergent. We now prove the

following more general theorem:

Theorem 19: // corresponding to every arrarigement (r) of the

terms of a series, there exists a D-definition (Dr) which gives the

series a finite value Sr, then the series converges absolutely.

We first observe that we may assume the series to have an

infinite number of terms of each sign; for otherwise, the theorem

* Here even requirement (i) is not fulfilled; see p. 56.

t We proved the satisfaction of the first requirement in all our cases except

Borel's absolute summability; similar proofs can be given for the second re-

quirement, some of which are included in Theorem iia.
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is proved, since the series cannot in that case diverge unless it

diverge to infinity, which is impossible because the corresponding

Z)-definition would give oo, thus contradicting the hypothesis.

The series has, then, an infinite number of positive terms («»)

and an infinite number of negative terms (— Vi). If each of the

series

«1 + «2 4- «3 + • •
•

— Vi — V2 — I's — • • •

converges, the sum converges absolutely (for we could otherwise

find an arrangement r such that Dr would give oo); and our

theorem is proved. Let us assume, then, that one of the series,

say the /(-series, is divergent. We can accordingly choose ki

terms from the /^-series so that

A-,

S«t > fl + I,

i=l

then the next ki terms of the w-series so that

S Ui> V2 + I,

and so on. Now consider the arrangement

^Ui — Vi -\- S W,- — 2^2 + • • •

.

The sum of the first 2« terms is greater than n\ and the sum of

the first {2n + i) terms is greater than w + a positive term.

Hence the series diverges to oo for this arrangement, and ac-

cordingly the corresponding Z)-definition gives it the value oo,

which contradicts the hypothesis.

A series may be defined to be absolutely convergent in two

ways: (i) if it converges when all its terms are made positive;

(2) if it converges for every arrangement of its terms. Since

the concept of absolute convergence is a useful one in the theory
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of convergent series, it is natural to ask whether we can intro-

duce, correspondingly, the notion of absolute evaluability into

the theory of divergent series. The two natural definitions would

be: A series is absolutely evaluable if it is evaluable (i) when

all its terms are made positive, (2) for every rearrangement of

its terms. Consider the first definition. If the series is eval-

uable when all the terms are made positive, it must be convergent;

for otherwise it would diverge to 00, and could not accordingly

be evaluable. As to the second definition; if a series is evaluable

for every arrangement of its terms, it is, by Theorem 19, ab-

solutely convergent. Hence neither of the definitions of absolute

evaluability is useful.



§ 8. TESTS FOR CESARO-SUMMABILITY

As in the case of convergence, it may happen that we wish

to know not what value a given series has, but whether it has

any value at all. We are accordingly led to consider tests for

summability.

We begin by recalling two theorems which have already been

stated

:

Theorem : A necessary condition that the series Ui -{- U2-{- Uz

+ • • • he summahle (Cr) is

— = 0.*
n=oo ^

Theorem (3) : A reducible averageable sequence with a finite

number of strong limit points is Cesdro-summable of order i

.

This is a sufficient condition for summability (Ci). We
shall now consider further sufficient conditions for summability

(Ci).

Theorem 20: //, in an alternating series, either (a) the terms

decrease monotonically in absolute value, or (b) the terms increase

monotonically in absolute value, while the sum of the first n terms

is limited, then the series is summahle (Ci).

Let the series be «i+«2+«3+* • •, and Sn = Ui-\-U2-\- • • •+Mn-

In case (a) we have Sim-\ ^ •S2m+i > ^2; S2m-2 ^ Sim ^ Si. In case

{h) we have 52m-i ^ s^m+i < A ; s^m-^ '> S2jn> A. Hence in either

case, Ij 52m+i exists = h; L 52m exists = 1%. By Theorem 3,

therefore, the series is summable (Ci).

As examples, we may take:

(i) 2 - f + f - f +2

Sec p. II.

76
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(ii) I -h + &-ay + {iy- •••,

(iii) I — I.I + I. II — I. Ill + I. nil — •...

Examples (i) and (ii) illustrate case (a)
;
(iii) illustrates case (b).

Theorem 21: Let
n _ n

Sji =^ ^^ Ui, On ^^ / - Si',

00

then the series zl ut is summable (Ci) if either (a) 5„< 5„+i < A,

n> N or (b) Sn > Sn+i > B,n> N.

For

<, _ .

,

_ i r ^1 + 52 + " • + Sn-l 1 _lr ^ ,

n\_ n — I J n

Now by (a), Sn — Sn-i > o, and S^ < A. Hence L 5„ exists.
Jl=00

Similarly for case (b).

Theorem 22: Le/ a series zLui satisfy the conditions

(a) the series is summable (Ci),

(b) \sn\ = \'Ui + «2 + • • • + Un\ < A,

and let a set of positive constants ci be given such that either

(c) Ci > Ci+i or (d) Ci < Ci+i < A, i > N; then the series

ciUi -\- etU2 -\- ' • • is summable {C\).

By (c), L e„ = ^, and e„ > k.
11=: CO

00

If ^ = o, 2^ eiUi is convergent by a well-known theorem,* and

hence is summable (Ci). If ^ =|= o, let 8n = Cn — k > o. Then

5n ^ 5„+i > o, and L 5^ = o. Accordingly* the series 2^ 8iUi
11=00 i=l

CO

is convergent, and hence summable (Ci). But 23 ^^'i is sum-
t=i

mable (Ci) by (a) ; so that

Sec Goursat-Hedrick, Mathematical Analysis, p. 349, § 166.
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00 eo

X! (5i + k)lli = Zl ^iUi

is summable (Ci). Similarly for case (d).

If in the preceding theorem we put

00

^Ui = l — l + l— I-',

we obtain:

Corollary I : // the terms of an alternating series tnonotonically

decrease in absolute value, the series is summable (Ci).

This is Theorem 20, case a.

Corollary 2 : If the terms of an alternating series remain limited,

and increase monotonically in absolute value, from some point on,

then the series is summable (Ci).

Since, if \sn\ < A, then |w„| = \sn — Sn-\\ ^ 2A, this corollary

includes Theorem 20, case b, as a special case.

Before proceeding to sufficient conditions for Ces^ro-sum-

mability of order higher than the first, we shall prove the follow-

ing theorem,* which we shall soon need.

Theorem 23: If V = Vi — v^ -\- Vz — v^^ -\- • • • is an alternating

series whose terms decrease monotonically in absolute value, then

the Cauchy-product of V by the series I — i + i — i-f'-' is

summable (C2).

By Theorem 20, the series V is summable (Ci); hence the

product is, by Theorem (j), surely summable (C3). We wish

to show that it is summable (C2).

{vi- Vi-\-Vs- v^-\- " •)(! - I + I - I • • •)

= Vi - (Vi + ^2) -\- (Vi + V2 -{- V3) — '

.

The sequence corresponding to this product series is:

(a) Vu — V2; Vi + Vz] — {vi + v^\ {vi + Vz-\- Vi); • • •

* More generally, if JJ and V are two alternating series whose terms de-

crease monotonically in absolute value, then the Cauchy-product of U and V
is summable (C2). The proof is similar to that given for Theorem 24.
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and the sequence for Ces^ro's first mean is:

m t'l; -^— ;
;

;
•••.

Let us write the odd and the even elements of this sequence:

n{Vi - V2) + (n - l)(V3 - Vi) + • ' • + {V2n-1 - V2n)
hn

271

[n{vi — V2) \-{n - i)(z'3 -Vi) + ••

, + (Z'2n-l - V2n)\ + (j'l + Z'3 + • ' ' + ?'2n+l)

2w + I

Now {Vi - V2) + (^^3 - 1-4) + • • • + (Z'2n-1 - V2n) + ' ' is COU-

vergent; for if Sn denotes the sum of the first n terms of this

series, we have

Sn-i < 5„ < Vi, since y„+i ^ z;„.

Since L 5„ exists,

y ^1 + -^2 + • • • + ^n

n=oe W
also exists, i, e.,

-P n(Vl - V2) + (« - OC^a - I'd) + • • • + {V2n-l - f2n) X ,

±J = Lj2t2n
n=oo '' ?j=oo

exists. Furthermore, since L !;„ exists (owing to the relation
11=00

O < Vn+l S ^n),

L ^2n+l = I,

Jl=0O

and hence

Thus

-Li hn+l — ±J hn ' ^ I
+ J_J

T ^1 + ^3 + • • • + V2n+1 _
J

2W
. ^ Vi-\-V3-\ f- V2n+l

2n + I „= « W 2W + I
'

and each of these limits exists.
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Thus by Theorem 3 the sequence /3, having two and only two

limits of equal weight, is summable (Ci). Hence the sequence

(a) is summable (C2) ; which we wished to prove.

If, in addition to the hypotheses of the preceding theorem,

Ij i'n = O,

then

Li
,

= 1 = 0,

and

_Lj hn+l — JLi hn-
71=00 ?i=C»

Thus we have the theorem, due to Hardy:

Theorem m;* TJie Cauchy-product of a convergent alternating

series whose terms decrease nio7iotonically itt absolute value to o,

by I — i-\-i — i+--- is summable (Ci).

We now return to sufficient conditions for summability.

Theorem 24: Let ui — 7/2 + ^^3 — «4 + • • • be an alternating

series, Ui > o, and A«it > o; then (a) if A^7^- < o, the series

is summable (C2); and (Jb) if in addition J^ Aw„ = o, the series is
n=ao

summable (Ci).

Case (a). Consider the series: Ui — Aui + A«2 — A«3 + • • •.

Since A«,- > o, this is an alternating series, and since A~Hi < o,

either A'^Ui = Aiii+i — A«,- ^ o, or the terms decrease mono-

tonically. Hence by Theorem 23 the Cauchy product

(«i — A«i + Au2 — Auz + •
' •){! — 1 -\- I — I • • •)

which is

= Ui — (ui + A7/1) + («i + Aui + A«2) — • • •

= Ui — Uo + Us — Ui -\- • • •

is summable (C2).

Case (b). Here the series «i — Aui + Au^ — Aih + • • •

* Bromwich, Infinite Series, p. 350, ex. 9. This is a special case of Theorerji

27, below.

t Atti = «,+i — m; A"Ui = A(A"~'m,).
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satisfies the hypothesis of Theorem M, since the terms decrease

monotonically to zero. Hence the product series iii — 7/2 + «3

— «4 + • • • is summable (Ci).

Thus, for example, the series

i-(i + l) + (i+^ + ^)

I - log 2 + log 3 - • • •

are summable (Ci) ; while the series

I - 2 + 3 - 4 + •••

22 + I 3' + I 4' + I

I — + +234
are summable (C2).

Theorem 25: // in the series Ui — «2 + «3

A^Mi > o,

A*+i«i < o,

tJien the series is summahle (Cyfc+2); if, in addition,

Xj A^"m„ = o,
71=00

then the series is snmmable (Ck+i)-

Let

I - I + I - ••• = yl,

dk = A^'wi — A*^«2 + A'^ws — • • •

,

do = 111 — ih -h Us — • ••

Then
do = A{ui — di)

di = AiAui — di)

du-x = A{A'-hii -dk)

Substituting the value of di in the expression for do,

do = Aui — A'^iAui — di).

Substituting for d^, ds, and so on, in turn,

«i > o,
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do = Aui - A^Mi + A^Ahh - • • • ± A'^A'^-^ui =f A'dk.

Now dk is an alternating series whose terms decrease monoton-

ically in absolute value. Hence dk is summable Ci, and A''dk is

summable* (Cfc+2). Since do =*= A'^dk consists of a finite number

of terms each of which is summable (Ct), or of lower order; it fol-

lows that do is summable {Ck+2), and the first part of our theorem

is proved.

If we now further assume

Ij A^w„ = o,
n=oo

it is seen that dk is convergent, and A''dk is summable Ck+i.

It follows, accordingly, that do is summable Ck+i.

* It can readily be proved that A'' is summable (C*).



§ 9- THEOREMS ON LIMITS

The object of this section is to emphasize the value, from a

practical point of view, of Theorem ii, which we restate for

the sake of convenience:

Theorem ii: // (i) L a,(w) = o, for alii,
n—aa

n

(2) Ij 2fl.(«) = I,

n=ao t=l

(3) either ai{n) > o,

n

or £lai(w)| < k*

(4) J^Sn = s, or + oo,t
n=oo

then
n

L ^ai{n)Si = s,

or + 00 respectively.

We have pointed out| that many of the definitions of sum-

mability are special cases of this theorem. But this theorem

applies also to many other theorems on limits. To illustrate,

we shall take some of the theorems from Bromwich's Theory

of Infinite Series. §

Theorem n: If Bn steadily increases to 00, then

LAn -|- A.n+1 An
-W- = ±J ^ _ D

n—00 -Cn n=« -On+1 -Dn

provided that the second limit exists, or is -\- <xi.

* See note (2), page 46.

fSee Theorem 11a.

t See pages 43-46.

§ Pp- 377-388.

83
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To apply Theorem ii,* we write:

£>i £>i — r>i-i

ai{n) =^; ai{n) =
, i > i.

Since
n

^ai{7i) = I,

1=1

and since it follows from the hypotheses that

Tj fl,(w) = o, and ai{n) > o,
w=oo

we may apply Theorem ii,* and say: If

Jj Sn = s or +00,
w=oo

then
" Ai ^ Ai — Ai-\ AnL ^ai{7i)Si = ^ + L Zl -^—Z—'— = \j-^ = s or +00.

71=00 i=l -^1 n—<x> i=l -D

n

n=ao -D

n

Theorem o: If the sequences (5„), (/„) converge to the limits s, t,

then

LSltn + -^2^71-1 + • • • + Sntl
= St.

n—aa '^

Here choose sequence

1 / \
tn—i+l

Sn = Sn, and ai{n) =——

•

nt

Now

and

Ij ai{n) = L - • - = o
m=ao n=oo n I

T •^ / X -r I ^1 + ^2 + • • • + ^n
Li l^ai{n) = Ij = I,

11:= QO i^l 71= CO I' '^

«mce
±ut„ = t.

* Also Theorem lia.
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Furthermore,

t=i I n t n t

since
| /„ | < k, because

Ij/„ = /

w=oo

Hence, applying Theorem ii, we obtain

lu Z^ai{n)Si= Li lu — • Si=- Li

SO that

LSltn + 52^n-l + • • • + Sji
= S • t.

We shall now prove Theorem L, which we stated on page 35

without proof.

Theorem l: // 2c„ is a divergent series of positive terms, then

J
CqSq + CiSi + C2S2 + • • • + CnSn _ j ^0 + ^1 + •^2 + ' ' ' + -^n

71= 00 ^ n=oo n

provided that the second limit exists and either (a) c„ steadily

decreases, (b) Cn steadily increases, subject to the condition

wc„ < (co + Ci + • • • + Cn)K,

where K is a fixed number.

I n either case, we put

^0 + ^1 + • • • + .^n

. . a + i)(c» - g.+i) .

,

an{n)

^Ci
t=0

_
{n + i)Cf

n

2 Ci
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Since by hypothesis
n

»i= oo i=0

we obtain

L a,(w) = o.
n= oo

Again

T V- / N T (C0-Ci)+ 2(Ci-C2)H \-n{Cn-l-Cr)-\-{n-\-l)Cn
_L Z^ «i(w) = Li n

= I.

Furthermore, in case (a), a.(w) > o, since by hypothesis

Cn+\ < Cn', and in case {h),

n
J

Sk»(«)l = li— [(^1 - ^o) + 2{c<i - Ci) + • • • + «(c„ - C„_i)

S,""' + (^ + ^)^"J

since by hypothesis c„+i > c„; i. e.,

E kiWI = -^ [- (co + ci + • • • + c„_i) + (2» + i)c„l

t=0

= - I +—^i
< 2 ^^ I I < 4A.

i=0 i=0

Hence in either case (a) or (J), we have:

n
J

Li E^iWo"! = L "S:— [(^0 — Ci)o-o + 2(ci — Ci)ai + • •
•

n=M 4=0 n=oo V~»
^'^'' + w(c„-i - C„)<r„_i + (« + l)c„(r„]

= L -^ [{Co - Ci)So + (Ci - C2)(5o + 5i) + • •
•

n=oo X~*

w

T J i=0 '
I T X -^0 + -^1 + • • • + S^n

= Li —i, \= LiOn = Li

i=0
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This theorem is a special case of the following more general

theorem

:

Theorem p: // Xbn, "ZCn are two divergent series of positive

terms, then
n n

Lt=0 T i=0
n -Li «, >

l^Ci Z^bi
i—O t=0

provided that the second limit exists and that either (a) Cn /bn steadily

decreases or {b) c„/bn steadily increases subject to the condition

Cn bn

where K is fixed.

Here we put

Zl Ci zl bi,

t=0 i=0

S brSi

^ n n

Ubi

so that

bnSn = (^0 + 61 + • • • + 6„)o-„ — (&0 + &1 + • • • + bn-l)<Jn-l,

and set

an{n)

b, + b,^ '• +bi
Co-\- Ci-\- • • • + Ci + • • • -\- Cn

Cnbo -\- bi + ' ' • + bn

bn Co + Ci + • • • + C„'

In the first place, since
n

L Sci = + 00,
n=oo t=0

it follows that

Ij ai{n) = o.
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Also

L ta,{n) = L -^-tir - r^) (^0 + 61 + • • • + h) = I.

t=0

Again in case (a), ai(n) > o; and in case (b),

" if
t=o y^ L

+ ^ (2&0+2&I+ • • • +2bn-i+ b„) 1

,
bo + b,+ '-' -hb„ ^ ^^= - I + 2 c„ < 2K.

Now we have:

{t-ty^-'^^ii-t)
6o5o + 6i5i

X (oo+oi) ^ ,
^— +

i=0

+ ( 7^^ ~h^) (^O^O+ ^l-^l'^ h^n-l5„-l)

On ]
I

— AJ n ['^O-^O + CiSi + • • • + Cn-lSn-\ + C„5„].
71= 00 X""

i=0

Thus in either case (o) or {b) we have the theorem estabHshed,

since
n

>i= oo 1=0 ji=oo

whenever the latter exists.



§ 10. CONCLUSION

In this concluding section we propose to recall some of our

main results, to show wherein they fall short of being complete,

and thus to formulate the problem which remains to be solved.

Our results of § 3, concerning averageable sequences, are

not of great value, since they involve a knowledge of the

existence of certain limit points before the question of the ex-

istence of the averageable limit could have any significance.

On the other hand. Theorem 3 is found useful in practice, in

showing that certain classes of averageable sequences are

summable (Ci).

Though we have discussed more general definitions, we shall

confine most of our consideration in this section to the A-

definition of evaluability.

It need hardly be pointed out that one of the inadequacies

of the .4 -definition is that it may not be unique; that is, two

specific sets of numbers Uin and bin, both satisfying the condi-

tions of the i4 -definition, may give difTerent values to the same

sequence. Thus the sequence Si = (— 1)*+^ log i has two differ-

ent* values for the two different definitions:

ain=-, bin =-\ I + (- lY+'r^.l, i>i
n n\_ log * J

I=
, ^ = I.

n

In fact* the former definition gives the sequence (5,) the value

o, while the latter gives it the value i.

Two questions accordingly present themselves. First: given

two yl -definitions, what is a sufificient condition that one defi-

* See p. 38.
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nition be a generalization* of the other? Secondly: under what

conditions are the two definitions equivalentf in scope?

We shall now consider each of these questions in turn. The

answer to the first question will be made clear by a few prop-

ositions.

Theorem 26: //

Sn = a:in2l+ Q;2nS2+ • • • +a;„n2„ = 6i„5i+ &2n-^2+ • • • -\-bnnSn,

where ain satisfy co7iditions of A-evaluability,t

n

2lbin=l, OCin'>0,X Ij ain = O,
t=l n=oo

and if Ij2„ = s, then Ij5„ = 5.

To prove this, we observe that by substituting the expression

for 2i in the first expression given for 5„, and equating the re-

sulting coefficients of Si to the coefficients of Si in the second

expression for 5n, we obtain

ainOinn + O-i n-\Oin-\ n + C^j n-'i.Cin-'i. n + * * * + auCiin = bin.

Adding these equations ior i = 1,2, • • • w, we get:

n TO—

1

i=j n

+ Oijn X/ O,-,- + • • • + flln • flu = X) bin
i-l i=l

or

ann + CXn-1 n + ' " * + «;« + ' ' * + «ln = I-

Thus the numbers «,„ satisfy all the conditions of Theorem 1 1

;

and our theorem is proved.

* Thus, if i4i is (G) and A2 is (Ci), then A2 is a generalization of Ai, if

I > k;i. e., if when Ai gives to (5„) a sum, then A2 will give to {Sn) the same

sum.

t Thus (i^r) and (G) are equivalent in scope; i. e., if either definition applies

to Sn and gives it the sum s, then the other definition will also apply and give

the sum s.

t See page 49, including footnote.
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Now assuming a„„ =1= o, and considering the formula

as w — i + I linear equations in the (n — i -\- i) letters q;,„,

cti+i, n ••• ttnn; the determinant of the system of equations is

ann O

fl^ln '^1 n-1

so that

I

an

— a„„<2n-l n-1 • ' • flu =p O,

fltifli+1 i+1 Ann

dnn

Qn-1 n <2n-l n-1

fli+l n fli+l n-1

din 0,i n—

1

O ^nn

O hn-\ n

flt+1 i+l ^i+l n

O'i t+1 Oin

D
fltifli+l i+1 • ' O-nn

We may then restate the previous theorem as follows:

Theorem 27: // ai„, bin are numbers satisfying conditions

for A-evaluability, and

D
an 4= o, ain =

an ' ' ' ann
> O,* Ij ain = o;

flwc^ •i/
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In particular, let o,n be the Cesaro coefficients for (Cr),

r{r -\- i) • • • (r -{- n — i — i)

_ Cr+n-i-l, n-i (w -i)!
Clin

Cr+n-1, n-1 (r+ 0(^ + 2) " (r -j- U - l)
'

{n-i)\

so thaton evaluating the determinant D, we obtain

I / r(r — i) \
ain = ( bin — rbi+l, „ + — bi+2, n • • + (— lYbi+r, n I ,

(la \ 1*2 /

or, using the notation

r{r — i)

{bin — bi+i, n)r = bin " ^&i+l, n + bi+2, n ' ' ' + (" T-Ybi+r, n

0!in = {bin — bi+\, n)r= [(^in "" ^t+l, n)r-l~(^i+l. n~0i+2, n)r-l].
da "a

It is evident that

L Olin =0 if Ij &in = O;
71=00 M= 00

hence we may say:

Theorem 28: // bin, corresponding to a definition B of evaliia-

bility, satisfies the condition {bin — bi+\, „),- > o,* then if the sequence

{Sn) is sitmmabh {Cr), it is also evaluable according to the B-definition.

If we let bin be the coefficients for summability {Hr), i. e.,

, ,. , {i, n)r-2
,

{i+i,n)r-2
, ,

{n,n)r-2
nbin = {i, n)r-i = :

+ jj——- + • • • +
,

where

then

II I

I t -j- I n

{i, w)i - (^ + I, «)i = -,

(i, w)p - {i -\- I, 7i)p = ^ -

* The condition 2 \{bin — bi+i, „)r| < K is sufficient.
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Now

n{bin - bi+i, „)i = [(i, 7i)r-i - (i + 1, n)r-i] = ——'—
,

(i, n)r-2 _ (t + I, n)r-2 _ (i, n)r-2 + (i, n)r-3

i i + I i{i -\- i)

Assume
, , _ Pi(i, n)r-2 + P2{i, n)r-3+ • • • + Piji, n)r-j-l

n{bin - ^+1. n)i-
i(^ + I) . . . (^ + J

_ I)

pi > o.

Then

nibin — bi+i, „)/+! = n [{bin — bi+i, n)j — (^i+1, n — bi+2, n)i]

ipiji, n)r-2 + (Pl +jP2){i, w)r-3 + • • • + PjjJ, n)r-j-2

i{i + i) '-• {i-\-j)

_ (Tlji, n)r-2 + (T2{i, n)r-Z-\- ' • • + q-;+l(t, It) r-j-2

i{i+l)"-{i+j)

Oi > O.

Hence by mathematical induction

,, , , _ pi(i, n)r-2 + Piji, n)r-3 + • • • + Pi{i, n)r-j-l
n{bir.-bi^Un)i-

^(^_|_i)...(i+^-_l)

Pi > o, and accordingly (&,„ — Z>,+i, „)/ > o.

Thus, by our last theorem, we may say:

Theorem q: // the sequence (Sn) is summable {Cr), then it is

also summable (Hr).*

The value of Theorem 27 is shown by its special cases, theorems

28 and Q. We shall give still another special case. Theorem P,

due to Hardy, t

* This theorem has been proved by Ford, Am. Journal of Math., Vol. 32,

1910, and by Schnee, Math. Annalen, Vol. 67, 1909. The converse which has

been first proved by Knopp, inaugural dissertation (Berlin, 1907), can also be

proved by using Theorem 29.

t Quarterly Journal, Vol. 38, 1907, p. 269. Hardy states that the first

part of the theorem had been given by Cauchy. See p. 87 for another proof.
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If a, > o, bi > o,

" "

An = Jlai, Bn = Y.bu L^n = <», Ij A n = ^

and if either

i=\ n= a>

or

and if also

then

Let

and

bj ^ ^i+i

Oi ~ ai+i

— < and -^ < K-7- , K > o,
Oi a,+i JDn -^n

-r aiSi + • • + OnSn
Li T T ^ ^'

n=aa C^l "T * ' ' ~r On

J biSi + • • • + bnSn _
n=«y b,-\- • • • -]r bn

_ Oi^ , _ _^
Oin A > Oin -ri

On O

On-1 On-l

Ofin ' ' ' Oi

Oi+1 Oi+i

Oi Oi

o
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then a,„ > o. If

bi ^ bi+i

a,-
""

fli+i'

then

i=i Bn\_\a2 ax) \az a-i

)

\an an-ij an J

= ^ [- hi - b. • ' • - bn-l] + ^ -^ {An-X + An)
JJn -D n an

On An
I Tjr • On ^ ^^ an= -i+2^ <-i+ 2K, Since ^^ < K- -r- .

Bn an Bn An

Thus Hardy's theorem is proved* by applying Theorem 27.!

Let us now return to the questions of page 89. The answer

to the first question is found in Theorem 27, which is seen to give

sufficient conditions that one of two definitions of summabiHty

be a generalization of the other. Though these sufficient con-

ditions are fairly simple, and prove useful in leading to impor-

tant theorems, it would seem extremely desirable to have suf-

ficient conditions that D > cj
To answer the second question, we need only observe that if

we can prove by Theorem 27 that definition (^) is a generalization

of definition {B) and also that definition {B) is a generalization

of definition {A), then {A) and {B) will be equivalent in scope.

Now let {Sn) be summable by the definition (^4) and (/„) by

{B), and let one definition be a generalization of the other.

* The proofs for this theorem, given by Hardy (loc. cit.) and by Bromwich,

Infinite Series, p. 386, are longer,

t See p. 49, footnote 2.

% See p. 91 and p. 49 footnote.
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Then the two sequences may be added term by term, and the

resulting sequence will be summable by the more general of the

two definitions. For if A is taken as the more general defini-

tion, then (Sn) is summable by (A) by hypothesis, and (/„), being

summable by (B), must also be summable by (A) which is a

generalization of (B). Thus (5„ + /„) is summable by (A).
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